Propomos um modelo Beta-Binomial/Poisson para dados provenientes de um estudo com doentes de Parkinson, que consistiu em contar durante um minuto quantas tarefas foram realizadas e destas, quantas de maneira correta, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo considera tal aspecto, usa uma distribuição mais adequada a dados de contagem e ainda suporta a sobredispersão presente nos dados. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Ilustramos a aplicação da metodologia desenvolvida aos dados do estudo. / We propose a Beta-Binomial/Poisson model to the data from a study with Parkinson disease patients, which consisted in counting for one minute how many trials were attempted and how many of them were successful, before and after a training period. The main goal was to check if training increased the number of trials and success probability, which emphasizes the bivariate aspect of the problem. This model takes this aspect into account, uses a distribution which is usually more adequate to count data and supports the overdispersion present in the data. We obtain the maximum likelihood estimators using a Newton-Raphson algorithm. For illustration, the methodology is applied to the data from study.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-09062011-095707 |
Date | 01 April 2004 |
Creators | Mayra Ivanoff Lora |
Contributors | Julio da Motta Singer, Linda Lee Ho, Carlos Alberto de Braganca Pereira |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds