Cette thèse de doctorat est composée de trois chapitres, un article et deux papiers et est principalement liée au domaine de l’économétrie financière empirique. Elle analyse la dépendance et le lien entre les marchés financiers et les marchés de matières premières, en particulier celui de l’énergie. Les distributions et corrélations des variables appartenant aux deux marchés sont étudiées afin de déterminer leurs effets les uns sur les autres et d’analyser leurs tendances pour donner un meilleur aperçu de leurs comportements vis-à-vis des crises et des événements brusques en économie. Ces variables sont représentées par certains indices financiers (SP500, Euro stoxx 50, Msci China) ainsi que par les principaux indices de matières premières (SP GSCI, Brent Oil,Gaz naturel, Metaux precieux). Nous choisissons de modéliser leur corrélation dans le temps et de prendre en compte la non-linéarité et l’instabilité qui peuvent les affecter. Pour cela, l’approche fonction copule a été employée pour modéliser d’une manière efficace leurs distributions. Dans le premier chapitre, nous examinons la dépendance et les co-mouvements entre les prix des émissions de dioxyde de carbone et les indices énergétiques comme le charbon, le gaz naturel, le Brent oil et l’indice énergétique global. Le deuxième chapitre analyse les interactions et relations entre le marché pétrolier et deux principaux marchés financiers en Europe et aux États-Unis représentés par l’Euro stoxx 50 et le SP500. Dans le dernier chapitre, on analyse la dépendance multivariée entre les indices de matière première de différents secteurs avec des indices financiers en utilisant le modèle de la copule Regular Vine. / This Ph.D. thesis is composed by three chapters and is mainly related to theempirical financial econometrics field. It analysis the dependence and correlationbetween the financial markets and the commodity markets specially energy.Variables from both markets are studied to determine their effects on each othersand to analyse their trends to giva a better insight to their co-movements.These variables are represented by some of the major equities (SP500, Eurostoxx 50, Msci China) as well as major commodities indices (SP GSCI commodity,Brent Oil, Natural Gas, Precious metals). We choose to model theircorrelation dynamically and take into account any non-linearity and stylisedfacts into the nature of their dependencies. For that, the copula approach wasused to model efficiently the correlated joint distributions of the studied variables.In the first paper, we examine the dependence and co-movements between theprices of the carbon dioxide emissions and energy commodities (coal, naturalgas, Brent oil and SP GSCI energy index). The dependence between thereturns was modeled by a particular class of dynamic copula, the StochasticAutoregressive Copula (SCAR). The second chapter analysis the interactions and co-movements between the oilmarket and two major stock markets in Europe and the US (the Euro stoxx 50and the SP500). Both the dynamic and the markov (regime switching) copulawere chosen to better understand the link between the two. In The last paper, I study the multivariate dependence between commoditiesfrom different sectors with some major equities using the Regular Vine copula model.
Identifer | oai:union.ndltd.org:theses.fr/2018AIXM0157 |
Date | 14 May 2018 |
Creators | Soury, Manel |
Contributors | Aix-Marseille, Marimoutou, Vélayoudom |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds