Return to search

Removal of copper ion (CU2+) from industrial effluent by immobilized microbial cells.

by So Chi Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / Acknowledgement --- p.i / Abstract --- p.ii / Chapter 1. --- Objectives of the Study --- p.1 / Chapter 2. --- Literature Review --- p.2 / Chapter 2.1 --- Heavy Metals in the Environment --- p.2 / Chapter 2.2 --- Heavy Metal Pollution in Hong Kong --- p.3 / Chapter 2.3 --- Chemistry and Toxicity of Copper in the Environment --- p.6 / Chapter 2.4 --- Conventional and Alternative Methods for Heavy Metal Removal --- p.10 / Chapter 2.5 --- Heavy Metal Removal by Microorganisms --- p.14 / Chapter 2.6 --- Factors Affecting Biosorption of Heavy Metals --- p.27 / Chapter 2.7 --- Applicability of Biosorbent in Heavy Metal Removal --- p.31 / Chapter 3. --- Materials and Methods --- p.36 / Chapter 3.1 --- Screening of Bacteria for Copper Removal Capacity --- p.36 / Chapter 3.1.1 --- Isolation of Bacteria from Activated Sludge --- p.36 / Chapter 3.1.2 --- Selection of Copper Resistant Bacteria from Water Samples --- p.37 / Chapter 3.1.3 --- Pre-screening of Bacteria for Copper Uptake --- p.37 / Chapter 3.1.4 --- Determination of Copper Removal Capacity of Selected Bacteria --- p.37 / Chapter 3.2 --- Effect of Culture Conditions on Copper Removal Capacity of Pseudomonas putida 5-X --- p.39 / Chapter 3.2.1 --- Effect of Nutrient Limitation --- p.39 / Chapter 3.2.2 --- Effect of Incubation Temperature and Culture Age --- p.41 / Chapter 3.3 --- Determination of Copper Uptake Mechanism of Pseudomonas putida 5-X --- p.41 / Chapter 3.3.1 --- Effect of Glucose and Sodium Azide on Copper Removal Capacity --- p.41 / Chapter 3.3.2 --- Transmission Electron Micrograph of Pseudomonas putida 5-X after Copper Uptake --- p.43 / Chapter 3.4 --- Effect of Pretreatment of Cells on Copper Removal Capacity of Pseudomonas putida 5-X --- p.43 / Chapter 3.5 --- Physico-chemical Characterization of Pseudomonas putida 5-X as Biosorbent for Copper Removal --- p.43 / Chapter 3.5.1 --- Determination of Copper Uptake Kinetics --- p.43 / Chapter 3.5.2 --- Determination of Freundlich Isotherm for Copper Uptake --- p.44 / Chapter 3.5.3 --- Effect of pH on Copper Removal Capacity --- p.44 / Chapter 3.5.4 --- Effect of Metal Ions on Copper Removal Capacity --- p.44 / Chapter 3.5.5 --- Effect of Anions on Copper Removal Capacity --- p.45 / Chapter 3.6 --- Copper Removal by Immobilized Cells of Pseudomonas putida 5-X --- p.45 / Chapter 3.6.1 --- Effect of Retention Time on Copper Removal Capacity of Immobilized Cells --- p.47 / Chapter 3.6.2 --- Efficiency of Copper Recovery from Immobilized Cells by Various Eluants --- p.47 / Chapter 3.6.3 --- Performance of Immobilized Cells on Multiple Copper Loading-elution Cycles --- p.48 / Chapter 3.6.4 --- Treatments of Effluent from an Electroplating Factory by Immobilized Cells --- p.48 / Chapter 4. --- Results --- p.49 / Chapter 4.1 --- Screening of Bacteria for Copper Removal Capacity --- p.49 / Chapter 4.2 --- Effect of Culture Conditions on Copper Removal Capacity of Pseudomonas putida 5-X --- p.49 / Chapter 4.2.1 --- Effect of Nutrient Limitation --- p.49 / Chapter 4.2.2 --- Effect of Incubation Temperature and Culture Age --- p.52 / Chapter 4.3 --- Determination of Copper Uptake Mechanism of Pseudomonas putida 5-X --- p.52 / Chapter 4.3.1 --- Effect of Glucose and Sodium Azide on Copper Removal Capacity --- p.52 / Chapter 4.3.2 --- Transmission Electron Micrograph of Pseudomonas putida 5-X after Copper Uptake --- p.52 / Chapter 4.4 --- Effect of Pretreatment of Cells on Copper Removal Capacity of Pseudomonas putida 5-X --- p.56 / Chapter 4.5 --- Physico-chemical Characterization of Pseudomonas putida 5-X as Biosorbent for Copper Removal --- p.56 / Chapter 4.5.1. --- Determination of Copper Uptake Kinetics --- p.56 / Chapter 4.5.2 --- Determination of Freundlich Isotherm for Copper Uptake --- p.56 / Chapter 4.5.3 --- Effect of pH on Copper Removal Capacity --- p.60 / Chapter 4.5.4 --- Effect of Metal Ions on Copper Removal Capacity --- p.60 / Chapter 4.5.5 --- Effect of Anions on Copper Removal Capacity --- p.60 / Chapter 4.6 --- Copper Removal by Immobilized Cells of Pseudomonas putida 5-X --- p.60 / Chapter 4.6.1 --- Copper Removal Capacity of Immobilized Cells and Breakthrough Curve for Copper Removal --- p.60 / Chapter 4.6.2 --- Effect of Retention Time on Copper Removal Capacity of Immobilized Cells --- p.65 / Chapter 4.6.3 --- Efficiency of Copper Recovery from Immobilized Cells by Various Eluants --- p.65 / Chapter 4.6.4 --- Performance of Immobilized Cells on Multiple Copper Loading-elution Cycles --- p.65 / Chapter 4.6.5 --- Treatment of Effluent from an Electroplating Factory by Immobilized Cells --- p.65 / Chapter 5. --- Discussion --- p.72 / Chapter 5.1 --- Screening of Bacteria for Copper Removal Capacity --- p.72 / Chapter 5.2 --- Effect of Culture Conditions on Copper Removal Capacity of Pseudomonas putida 5-X --- p.73 / Chapter 5.2.1 --- Effect of Nutrient Limitation --- p.73 / Chapter 5.2.2 --- Effect of Incubation Temperature and Culture Age --- p.74 / Chapter 5.3 --- Determination of Copper Uptake Mechanism of Pseudomonas putida 5-X --- p.75 / Chapter 5.3.1 --- Effect of Glucose and Sodium Azide on Copper Removal Capacity --- p.75 / Chapter 5.3.2 --- Transmission Electron Micrograph of Pseudomonas putida 5-X after Copper Uptake --- p.75 / Chapter 5.4 --- Effect of Pretreatment of Cells on Copper Removal Capacity of Pseudomonas putida 5-X --- p.76 / Chapter 5.5 --- Physico-chemical Characterization of Pseudomonas putida 5-X as Biosorbent for Copper Removal --- p.77 / Chapter 5.5.1 --- Copper Uptake Kinetics --- p.77 / Chapter 5.5.2 --- Freundlich Isotherm for Copper Uptake --- p.78 / Chapter 5.5.3 --- Effect of pH on Copper Removal Capacity --- p.78 / Chapter 5.5.4 --- Effect of Metal Ions on Copper Removal Capacity --- p.79 / Chapter 5.5.5 --- Effect of Anions on Copper Removal Capacity --- p.80 / Chapter 5.6 --- Copper Removal by Immobilized Cells of Pseudomonas putida 5-X --- p.80 / Chapter 5.6.1 --- Copper Removal Capacity of Immobilized Cells and Breakthrough Curve for Copper Removal --- p.80 / Chapter 5.6.2 --- Effect of Retention Time on Copper Removal Capacity of Immobilized Cells --- p.82 / Chapter 5.6.3 --- Efficiency of Copper Recovery from Immobilized Cells by Various Eluants --- p.82 / Chapter 5.6.4 --- Performance of Immobilized Cells on Multiple Copper Loading-elution Cycles 的 --- p.83 / Chapter 5.6.5 --- Treatment of Effluent from an Electroplating Factory by Immobilized Cells --- p.84 / Chapter 6. --- Conclusion --- p.85 / Chapter 7. --- Summary --- p.87 / Chapter 8. --- References --- p.89

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318725
Date January 1991
ContributorsSo, Chi Ming., Chinese University of Hong Kong Graduate School. Division of Biology.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 104 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds