L’évolution du contexte énergétique mondial et la lutte contre le changement climatique ont conduit à l’accroissement des capacités de production d’énergie renouvelable. Les énergies renouvelables sont caractérisées par une forte variabilité due à leur dépendance aux conditions météorologiques. La maîtrise de cette variabilité constitue un enjeu important pour les opérateurs du système électrique, mais aussi pour l’atteinte des objectifs européens de réduction des émissions de gaz à effet de serre, d’amélioration de l’efficacité énergétique et de l’augmentation de la part des énergies renouvelables. Dans le cas du photovoltaïque(PV), la maîtrise de la variabilité de la production passe par la mise en place d’outils qui permettent de prévoir la production future des centrales. Ces prévisions contribuent entre autres à l’augmentation du niveau de pénétration du PV,à l’intégration optimale dans le réseau électrique, à l’amélioration de la gestion des centrales PV et à la participation aux marchés de l’électricité. L’objectif de cette thèse est de contribuer à l’amélioration de la prédictibilité à court-terme (moins de 6 heures) de la production PV. Dans un premier temps, nous analysons la variabilité spatio-temporelle de la production PV et proposons une méthode de réduction de la non-stationnarité des séries de production. Nous proposons ensuite un modèle spatio-temporel de prévision déterministe qui exploite les corrélations spatio-temporelles entre les centrales réparties sur une région. Les centrales sont utilisées comme un réseau de capteurs qui permettent d’anticiper les sources de variabilité. Nous proposons aussi une méthode automatique de sélection des variables qui permet de résoudre les problèmes de dimension et de parcimonie du modèle spatio-temporel. Un modèle spatio-temporel probabiliste a aussi été développé aux fins de produire des prévisions performantes non seulement du niveau moyen de la production future mais de toute sa distribution. Enfin nous proposons, un modèle qui exploite les observations d’images satellites pour améliorer la prévision court-terme de la production et une comparaison de l’apport de différentes sources de données sur les performances de prévision. / The evolution of the global energy context and the challenges of climate change have led to anincrease in the production capacity of renewable energy. Renewable energies are characterized byhigh variability due to their dependence on meteorological conditions. Controlling this variabilityis an important challenge for the operators of the electricity systems, but also for achieving the Europeanobjectives of reducing greenhouse gas emissions, improving energy efficiency and increasing the share of renewable energies in EU energy consumption. In the case of photovoltaics (PV), the control of the variability of the production requires to predict with minimum errors the future production of the power stations. These forecasts contribute to increasing the level of PV penetration and optimal integration in the power grid, improving PV plant management and participating in electricity markets. The objective of this thesis is to contribute to the improvement of the short-term predictability (less than 6 hours) of PV production. First, we analyze the spatio-temporal variability of PV production and propose a method to reduce the nonstationarity of the production series. We then propose a deterministic prediction model that exploits the spatio-temporal correlations between the power plants of a spatial grid. The power stationsare used as a network of sensors to anticipate sources of variability. We also propose an automaticmethod for selecting variables to solve the dimensionality and sparsity problems of the space-time model. A probabilistic spatio-temporal model has also been developed to produce efficient forecasts not only of the average level of future production but of its entire distribution. Finally, we propose a model that exploits observations of satellite images to improve short-term forecasting of PV production.
Identifer | oai:union.ndltd.org:theses.fr/2017PSLEM066 |
Date | 20 December 2017 |
Creators | Agoua, Xwégnon |
Contributors | Paris Sciences et Lettres, Kariniotakis, Georges, Girard, Robin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds