• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probalistic analysis of repairable redundant systems

Muller, Maria Anna Elizabeth 18 October 2006 (has links)
Abstract not available: / Thesis (PhD (Systems Engineering))--University of Pretoria, 2007. / Industrial and Systems Engineering / unrestricted
2

A probabilistic approach for cluster based polyrepresentative information retrieval

Abbasi, Muhammad Kamran January 2015 (has links)
Document clustering in information retrieval (IR) is considered an alternative to rank-based retrieval approaches, because of its potential to support user interactions beyond just typing in queries. Similarly, the Principle of Polyrepresentation (multi-evidence: combining multiple cognitively and/or functionally diff erent information need or information object representations for improving an IR system's performance) is an established approach in cognitive IR with plausible applicability in the domain of information seeking and retrieval. The combination of these two approaches can assimilate their respective individual strengths in order to further improve the performance of IR systems. The main goal of this study is to combine cognitive and cluster-based IR approaches for improving the eff ectiveness of (interactive) information retrieval systems. In order to achieve this goal, polyrepresentative information retrieval strategies for cluster browsing and retrieval have been designed, focusing on the evaluation aspect of such strategies. This thesis addresses the challenge of designing and evaluating an Optimum Clustering Framework (OCF) based model, implementing probabilistic document clustering for interactive IR. Thus, polyrepresentative cluster browsing strategies have been devised. With these strategies a simulated user based method has been adopted for evaluating the polyrepresentative cluster browsing and searching strategies. The proposed approaches are evaluated for information need based polyrepresentative clustering as well as document based polyrepresentation and the combination thereof. For document-based polyrepresentation, the notion of citation context is exploited, which has special applications in scientometrics and bibliometrics for science literature modelling. The information need polyrepresentation, on the other hand, utilizes the various aspects of user information need, which is crucial for enhancing the retrieval performance. Besides describing a probabilistic framework for polyrepresentative document clustering, one of the main fi ndings of this work is that the proposed combination of the Principle of Polyrepresentation with document clustering has the potential of enhancing the user interactions with an IR system, provided that the various representations of information need and information objects are utilized. The thesis also explores interactive IR approaches in the context of polyrepresentative interactive information retrieval when it is combined with document clustering methods. Experiments suggest there is a potential in the proposed cluster-based polyrepresentation approach, since statistically signifi cant improvements were found when comparing the approach to a BM25-based baseline in an ideal scenario. Further marginal improvements were observed when cluster-based re-ranking and cluster-ranking based comparisons were made. The performance of the approach depends on the underlying information object and information need representations used, which confi rms fi ndings of previous studies where the Principle of Polyrepresentation was applied in diff erent ways.
3

Brain-inspired Stochastic Models and Implementations

Al-Shedivat, Maruan 12 May 2015 (has links)
One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.
4

Development and Application of Novel Computer Vision and Machine Learning Techniques

Depoian, Arthur Charles, II 08 1900 (has links)
The following thesis proposes solutions to problems in two main areas of focus, computer vision and machine learning. Chapter 2 utilizes traditional computer vision methods implemented in a novel manner to successfully identify overlays contained in broadcast footage. The remaining chapters explore machine learning algorithms and apply them in various manners to big data, multi-channel image data, and ECG data. L1 and L2 principal component analysis (PCA) algorithms are implemented and tested against each other in Python, providing a metric for future implementations. Selected algorithms from this set are then applied in conjunction with other methods to solve three distinct problems. The first problem is that of big data error detection, where PCA is effectively paired with statistical signal processing methods to create a weighted controlled algorithm. Problem 2 is an implementation of image fusion built to detect and remove noise from multispectral satellite imagery, that performs at a high level. The final problem examines ECG medical data classification. PCA is integrated into a neural network solution that achieves a small performance degradation while requiring less then 20% of the full data size.
5

Développement de méthodes spatio-temporelles pour la prévision à court terme de la production photovoltaïque / Development of spatio-temporal methods for short term forecasting of photovoltaïc production

Agoua, Xwégnon 20 December 2017 (has links)
L’évolution du contexte énergétique mondial et la lutte contre le changement climatique ont conduit à l’accroissement des capacités de production d’énergie renouvelable. Les énergies renouvelables sont caractérisées par une forte variabilité due à leur dépendance aux conditions météorologiques. La maîtrise de cette variabilité constitue un enjeu important pour les opérateurs du système électrique, mais aussi pour l’atteinte des objectifs européens de réduction des émissions de gaz à effet de serre, d’amélioration de l’efficacité énergétique et de l’augmentation de la part des énergies renouvelables. Dans le cas du photovoltaïque(PV), la maîtrise de la variabilité de la production passe par la mise en place d’outils qui permettent de prévoir la production future des centrales. Ces prévisions contribuent entre autres à l’augmentation du niveau de pénétration du PV,à l’intégration optimale dans le réseau électrique, à l’amélioration de la gestion des centrales PV et à la participation aux marchés de l’électricité. L’objectif de cette thèse est de contribuer à l’amélioration de la prédictibilité à court-terme (moins de 6 heures) de la production PV. Dans un premier temps, nous analysons la variabilité spatio-temporelle de la production PV et proposons une méthode de réduction de la non-stationnarité des séries de production. Nous proposons ensuite un modèle spatio-temporel de prévision déterministe qui exploite les corrélations spatio-temporelles entre les centrales réparties sur une région. Les centrales sont utilisées comme un réseau de capteurs qui permettent d’anticiper les sources de variabilité. Nous proposons aussi une méthode automatique de sélection des variables qui permet de résoudre les problèmes de dimension et de parcimonie du modèle spatio-temporel. Un modèle spatio-temporel probabiliste a aussi été développé aux fins de produire des prévisions performantes non seulement du niveau moyen de la production future mais de toute sa distribution. Enfin nous proposons, un modèle qui exploite les observations d’images satellites pour améliorer la prévision court-terme de la production et une comparaison de l’apport de différentes sources de données sur les performances de prévision. / The evolution of the global energy context and the challenges of climate change have led to anincrease in the production capacity of renewable energy. Renewable energies are characterized byhigh variability due to their dependence on meteorological conditions. Controlling this variabilityis an important challenge for the operators of the electricity systems, but also for achieving the Europeanobjectives of reducing greenhouse gas emissions, improving energy efficiency and increasing the share of renewable energies in EU energy consumption. In the case of photovoltaics (PV), the control of the variability of the production requires to predict with minimum errors the future production of the power stations. These forecasts contribute to increasing the level of PV penetration and optimal integration in the power grid, improving PV plant management and participating in electricity markets. The objective of this thesis is to contribute to the improvement of the short-term predictability (less than 6 hours) of PV production. First, we analyze the spatio-temporal variability of PV production and propose a method to reduce the nonstationarity of the production series. We then propose a deterministic prediction model that exploits the spatio-temporal correlations between the power plants of a spatial grid. The power stationsare used as a network of sensors to anticipate sources of variability. We also propose an automaticmethod for selecting variables to solve the dimensionality and sparsity problems of the space-time model. A probabilistic spatio-temporal model has also been developed to produce efficient forecasts not only of the average level of future production but of its entire distribution. Finally, we propose a model that exploits observations of satellite images to improve short-term forecasting of PV production.

Page generated in 0.039 seconds