Return to search

Sustainable Management of Water Resources and Hydropower Projects in the Context of the Food-Energy-Water Nexus in the Mekong River Basin

The Mekong River Basin (MRB) is one of the largest transboundary basins in the world shared between six south Asian countries. The Mekong river supports a population of more than sixty million people through irrigation and fisheries for their survival and hosts approximately 88,000 MW of unharnessed hydropower potential. The construction of the dams for the supply of energy has a wide-ranging effect on the downstream regions of reservoirs, causing unprecedented and devastating damage to the environment and livelihood of people. The dissertation examines the optimal operation of the dams for the equitable distribution of water between irrigation, domestic, and hydropower sectors with minimal effect on the downstream ecosystem by estimating the cascading effects of dams in the MRB. The hydrological characteristic of the MRB was simulated using the high resolution (1 km) Variable Infiltration Capacity (VIC) hydrological model with the Lohmann et al. (1996, 1998) routing scheme and general circulation models projection for the future till 2099. Remote sensing products were used for the derivation of the reservoir behaviors, while the net irrigation water requirement (NIWR) was simulated by the irrigation scheme embedded in the improved VIC model. The VIC-MODFLOW (VIC-MF) coupled model was used for the investigation of the interaction between the surface and groundwater movement. The hydropower potential of the dams was estimated using the modified Hanasaki et al. (2006) approach by explicitly considering the irrigation water demand from the expanding and intensifying agricultural activities. A system dynamic model for the MRB was developed for the sustainable optimization of water allocation to meet the needs from the irrigation, domestic, hydropower generation, and ecological sectors. Economic analysis was performed to evaluate the existing and future conditions over the resource surplus regions with consideration of social impacts. Streamflows in the MRB varied substantially with the peak monthly streamflow from 10 m3/sec to 40,000 m3/sec. The inflows to dams in both main river and tributaries are projected to increase from 1.2% to 25% under RCP 4.5 and a decrease of 28.5% - 74.7% under RCP 8.5 during 2020-2099 as compared to the historic mean. The NIWR for the MRB was calculated as 65,000 million m3 for the observed period (1981-2019) with a decrease of 0.25% for the future period. The groundwater interaction is expected to enhance the surface streamflow resulting in additional inflow to dams. The multipurpose reservoirs were able to generate the desired annual energy ranging from 15 GWh to 400 GWh along with satisfying more than 80% of the irrigation water demand. Similarly, the irrigation reservoirs also satisfied more than 80% of the water demand for irrigation and hydropower reservoirs to generate the required energy between 2 GWh and 18990 GWh. Climate change will enhance the hydropower potential with an average increase of 7.3% and 5.3% in the future under RCP 4.5 and RCP 8.5, respectively. The increase in the irrigated area (5% and 10%) reduces the energy generation of the multipurpose dams by 1.5%, however, the addition of a crop cycle lowers the energy generation by more than 10%. The system dynamics model showed the multipurpose dams produced annual energy of 316 GWh and satisfied more than 60% of the irrigation, municipal, and industrial sectors water demand during 2006-2019. Similarly, irrigation dams supplying more than 60% of the irrigation water demand, and 50% of the municipal and industrial sectors demand. Climate change has a positive influence on the performance of the dams. The assessment of the shadow price shows that the dam operation in Thailand, Laos PDR, and China will be sufficient to meet the water demands of the energy, irrigation, municipal, and industrial sectors, while the energy sector of Cambodia and Vietnam may experience adverse impacts. / Doctor of Philosophy / The Mekong River Basin (MRB) is one of the largest transboundary basins in the world shared between six south Asian countries. The Mekong river supports more than sixty million people through irrigation and fisheries for their survival and hosts unharnessed hydropower potential. The construction of the dams has a wide-ranging effect on the downstream regions of reservoirs, causing damage to the environment and livelihood of people. The dissertation studies the optimal operation of the dams in the MRB for the equitable distribution of water between irrigation, domestic, and hydropower sectors with minimal effect on the ecosystem. The streamflow of the MRB was simulated using the hydrological model with a routing scheme and future projection till 2099. Remote sensing products were used for the derivation of the reservoir behaviors. The water requirement for the irrigation and the groundwater-surface interaction was simulated by the irrigation scheme embedded in the hydrological model and groundwater coupled model. The hydropower potential of the dams was estimated by explicitly considering the irrigation water demand from the expanding and intensifying agricultural activities. A dynamic model for the MRB was developed for the sustainable optimization of water allocation to meet the needs from the irrigation, domestic, hydropower generation, and ecological sectors. Economic analysis was performed to evaluate the existing and future conditions over the resource surplus regions with consideration of social impacts. Streamflows in the MRB varied substantially between the dams based on the location at the mainstem or tributaries. The inflows to dams in both main river and tributaries in the future is expected to increase under low-carbon emission and decrease under high-carbon emission conditions. The irrigation water for the MRB was calculated as 65,000 million m3 for the period 1981-2019 and expected to decrease in the future. The groundwater interaction is expected to increase the surface streamflow resulting in additional inflow to dams. The multipurpose reservoirs were able to generate the desired annual energy ranging along with satisfying more than 80% of the irrigation water demand. Similarly, the irrigation reservoirs also satisfied more than 80% of the water demand for irrigation and hydropower reservoirs to generate the required energy. Climate change will favor the hydropower energy potential in the future. The increase in the irrigated area and the addition of a crop cycle reduces the energy generation of the multipurpose dams. The system dynamics model showed the multipurpose dams produced 97% of the demand energy and satisfied more than 60% of the irrigation, municipal, and industrial sectors water demand during 2006-2019. Similarly, irrigation dams supplying more than 60% of the irrigation water demand, and 50% of the municipal and industrial sectors demand. Climate change has a positive influence on the performance of the dams. The assessment of the shadow price shows that the dam operation in Thailand, Laos PDR, and China will be sufficient to meet the water demands of the energy, irrigation, municipal, and industrial sectors, while the energy sector of Cambodia and Vietnam may experience adverse impacts.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/109991
Date16 November 2020
CreatorsAli, Syed Azhar
ContributorsBiological Systems Engineering, Sridhar, Venkataramana, Sample, David J., Mills, Bradford F., Zobel, Christopher W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds