Return to search

Polymer Components for Photonic Integrated Circuits

Optical polymers are a subject of research and industry implementation for many decades. Optical polymers are inexpensive, easy to process and flexible enough to meet a broad range of application-specific requirements. These advantages allow a development of cost-efficient polymer photonic integrated circuits for on-chip optical communications. However, low refractive index contrast between core and cladding limits light confinement in a core and, consequently, integrated polymer device miniaturization. Also, polymers lack active functionality like light emission, amplification, modulation, etc. In this work, we improved a performance of integrated polymer waveguides and demonstrated active waveguide devices. Also, we present novel Si QD/polymer optical materials. In the integrated device part, we demonstrate optical waveguides with enhanced performance. Decreased radiation losses in air-suspended curved waveguides allow low-loss bending with radii of only 15 µm, which is far better than &gt;100 µm for typical polymer waveguides. Another study shows a positive effect of thermal treatment on acrylate waveguides. By heating higher than polymer glass transition temperature, surface roughness is reflown, minimizing scattering losses. This treatment method enhances microring resonator Q factor more than 2 times. We also fabricated and evaluated all-optical intensity modulator based on PMMA waveguides doped with Si QDs. We developed novel hybrid optical materials. Si QDs are encapsulated into PMMA and OSTE polymers. Obtained materials show stable photoluminescence with high quantum yield. We achieved the highest up to date ~65% QY for solid-state Si QD composites. Demonstrated materials are a step towards Si light sources and active devices. Integrated devices and materials presented in this work enhance the performance and expand functionality of polymer PICs. The components described here can also serve as building blocks for on-chip sensing applications, microfluidics, etc. / <p>QC 20171207</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-219556
Date January 2017
CreatorsMarinins, Aleksandrs
PublisherKTH, Skolan för teknikvetenskap (SCI), Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-FYS, 0280-316X ; 2017:66

Page generated in 0.0025 seconds