In the current global climate of declining fossil fuel reserves and due to the impact of industry on the natural environment, industrial sustainability is becoming ever more important. However, sustainability is quite a vague concept for many, and there are a range of interpretations of the word. If the resource efficiency of a factory is taken as a measure of its sustainability, then the concept becomes better defined and quantifiable. In order to analyse the resource efficiency of a factory and suggest improvements, all flows through the manufacturing system need to be modelled. However the factory is a complex environment, there is a wide variation in the quality levels of energy as well as the composition of material flows in the system. The research presented in this thesis shows how the thermodynamics-based concept of ‘exergy’ can be used to quantify the resource efficiency of a factory. The factory is considered an ‘integrated system’, meaning it is composed of the building and the production processes, both interacting with each other. This is supported by three case studies in different industries that demonstrate the practical application of the approach. A review of literature identified that it was appropriate to develop a novel approach that combined exergy analysis with the integrated view of the factory. Such an approach would allow a ‘holistic’ assessment of resource efficiency for different technology options possibly employable. The development of the approach and its illustration through practical case studies is the main contribution of the work presented. Three case studies, when viewed together, illustrate all aspects of the novel exergy based resource accounting approach. The first case study is that of an engine production line, in which the resource efficiency of this part of the factory is analysed for different energy system options relating to heating ventilation and air conditioning. Firstly, the baseline is compared with the use of a solar photovoltaic array to generate electricity, and then a heat recovery unit is considered. Finally, both of these options were used together, and here it is found that the non-renewable exergy supply and exergy destruction are reduced by 51.6% and 49.2% respectively. The second case study is that of a jaggery (a sugar substitute) production line. The exergy efficiency of the process is calculated based on varying the operating temperature of the jaggery furnace. The case study describes the modelling of al flows through the jaggery process in terms of exergy. Since this is the first example of an exergy analysis of a jaggery process, it can be considered a minor contribution of the work. An imaginary secondary process that could utilize the waste heat from the jaggery process is considered in order to illustrate the application of the approach to industrial symbiosis. The non-renewable exergy supply and exergy destruction are determined for the baseline and the alternative option. The goal of this case study is not to present a thermally optimized design; rather it illustrates how the exergy concept can be used to assess the impact of changes to individual process operations on the overall efficiency in industrial symbiosis. When considering natural resource consumption in manufacturing, accounting for clean water consumption is increasingly important. Therefore, a holistic methodology for resource accounting in factories must be able to account for water efficiency as well. The third case study is that of a food production facility where the water supply and effluent are modelled in terms of exergy. A review of relevant literature shows that previously, the exergy content of only natural water bodies and urban wastewater had been quantified. To the author’s knowledge, this is the first example of applying this methodology of modelling water flows in a manufacturing context. The results show that due to a high amount of organic content in food process effluent, there is significant recoverable exergy in it. Therefore, a hypothetical water treatment process was assumed to estimate the possible savings in exergy consumption. The results show that at least a net 4.1% savings in terms of exergy could be possible if anaerobic digestion water treatment was employed. This result can be significant for the UK since the food sector forms a significant portion of the industry in the country. Towards the end of the thesis, a qualitative study is also presented that aims to evaluate the practical utility of the approach for the industry. A mixed method approach was used to acquire data from experts in the field and analyse their responses. The exergy based resource accounting method developed in this thesis was first presented to them before acquiring the responses. A unanimous view emerged that the developed exergy based factory resource accounting methodology has good potential to benefit industrial sustainability. However, they also agreed that exergy was too complex a concept to be currently widely applied in practice. To this effect, measures that could help overcome this barrier to its practical application were presented which form part of future work.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:693489 |
Date | January 2016 |
Creators | Khattak, Sanober Hassan |
Publisher | De Montfort University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/2086/12488 |
Page generated in 0.0054 seconds