Return to search

Characterization and modeling of dry etch processes for titanium nitride and titanium films in Cl₂/N₂ and BCl₃ plasmas

In the past few years, the demands for high speed semiconductor integrated circuits have warranted new techniques in their fabrication process which will meet the ever-shrinking dimensions. The gaseous plasma assisted etching is one of these revolutionary processes. However, the plasma and the etch process are very complex in nature. It has been very difficult to understand various species present in the plasma and their role in the etch reaction. In addition, the submicron geometries also require interconnect materials which will satisfy the necessary properties such as thermal stability and low electrical resistance. Titanium (Ti) and titanium nitride (TiN) are widely used as barriers between aluminum (Al) and silicon (Si) to prevent the destructive intermixing of these two materials. The process of patterning of the interconnect containing Ti and TiN along with Al has been a challenge to the semiconductor process engineers. Therefore, complete characterization of the plasma etch process of Ti and TiN films and development of mathematical models to represent the responses such as the etch rate and uniformity is necessary for a good understanding of the etching process. A robust and well controlled metal etch process usually results in good die yield per wafer and hence can translate into higher profits for the semiconductor manufacturer.

The objective of this dissertation is to characterize the plasma etch processes of Ti and TiN films in chlorine containing plasmas such as BCl₃ and Cl₂/N₂ and to develop mathematical models for the etch processes using statistical experimental design and analysis technique known as Response Surface Methodology (RSM). In this work, classical experiments are conducted on the plasma etch process of Ti and TiN films by varying the process parameters, such as gas flow, radio frequency (RF) power, reaction pressure, and temperature, one parameter at a time, while maintaining the other parameters constant. The variation in the etch rate with the change in the process parameter of the film is studied and the results were explained in terms of the concepts of plasma. These experiments, while providing very good understanding of the main effects of the parameters, yield little or no information on the higher order effects or interaction between the process parameters. Therefore, modern experimental design and analysis techniques using computerized statistical methods need to be employed for developing mathematical models for these complex plasma etch processes.

The second part of this dissertation concentrates on the Design and Analysis of Experiments using Response Surface Methodology (RSM) and development of models for the etch rate and the etch uniformity of the Ti and TiN films in chlorine-containing plasmas such as Cl₂/N₂ and Cl₂/N₂/BCl₃. A complete characterization of the plasma etch process of Ti and TiN films is achieved with the RSM technique and a well fitting and statistically significant models have been developed for the process responses, such as the etch rate and the etch uniformity. These models also provide a means for quantitative comparison of main effects, which are also known as first order effects, second order effects and two factor interactions. The models, thus developed, can be effectively used for an etch process optimization, prediction of the responses without actually conducting the experiments, and the determination of process window.

This dissertation work has achieved a finite study of the plasma etch process of Ti and TiN films. There is tremendous potential and scope for further research in this area, limited only by the available resources for wafer processing. A few of the possibilities for further research is discussed in the next few sentences. The optimized process derived from the RSM technique needs to be implemented in the actual production process of the semiconductor ICs and its effects on the wafer topography, etch residue and the resulting die yield have to be studied. More research studies are needed to examine the effect of process parameters such as temperature, the size and shape of the etch chamber, the quality of the film being etched, among other parameters. It is worth emphasizing in this respect that this dissertation marks beginning of research work into the ever-increasing complexities of gas plasma. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/37977
Date06 June 2008
CreatorsMuthukrishnan, N. Moorthy
ContributorsElectrical Engineering, Elshabini-Riad, Aicha A., Ameriadis, Kostas, Farkas, Diana, Wang, Anbo, Su, Wansheng
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxiv, 210 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 36411320, LD5655.V856_1996.M884.pdf

Page generated in 0.0026 seconds