Return to search

Bispidine-iron (II) complexes as a novel platform for the design of magentogenic probes

This work concerns the development and characterization of molecular probes that respond to a chemical analyte in a liquid sample by turning from a diamagnetic to a paramagnetic state (off-on mode).With the aim of designing these tools, we focused on iron(II) chelates of bicyclic bispidines as they promised, among others, sufficient probe stability, even in competitive media like water. This manuscript describes new robust synthetic protocols for their large-scale preparation. Synthesized bispidine-iron(II) complexes were thoroughly characterized in solution (1D/2D NMR, MS, UV-Vis, CV) and in the solid state (X-ray and SQUID). In particular, I report here the first diamagnetic, low spin examples thereof, as well as pairs of structurally related diamagnetic-paramagnetic chelates. It now enables the design of responsive probes for various (bio)-chemical targets (including enzyme biomarkers), accessible by one-step functionalization of a key synthetic intermediate with suitable trigger moieties. The first two such probes are described herein, which respond to the presence of a particular kind of anion or a change in the pH.In addition in the course of my work, the unprecedented radioactive iron(II) (Fe-59 isotope) complex of a model water-insoluble ligand was prepared and used in an initial biodistribution study in mice. This original protocol can now be directly adapted to virtually all iron(II)-based probe candidates. Furthermore, the relaxivity data obtained for model MRI-silent and MRI-active chelates, in conjunction with the in vivo behavior of the active form in mice, bode well for a creation of an MRI probe functioning in a true off-on mode.Methodologies and molecular designs described herein enable the development of solution-operating magnetogenic molecular probes, which until now have not been synthesized. The availability of such tools would open up numerous perspectives for technological, environmental and biomedical applications.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01059820
Date30 October 2013
CreatorsKolanowski, Jacek Lukasz
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds