Return to search

Problèmes d'inclusions couplées : Éclatement, algorithmes et applications

Cette thèse est consacrée à la résolution de problèmes d'analyse non linéaire multivoque dans lesquels plusieurs variables interagissent. Le problème générique est modélisé par une inclusion vis-à-vis d'une somme d'opérateurs monotones sur un espace hilbertien produit. Notre objectif est de concevoir des nouveaux algorithmes pour résoudre ce problème sous divers jeux d'hypothèses sur les opérateurs impliqués et d'étudier le comportement asymptotique des méthodes élaborées. Une propriété commune aux algorithmes est le fait qu'ils procèdent par éclatement en ceci que les opérateurs monotones et, le cas échéant, les opérateurs linéaires constitutifs du modèle agissent indépendamment au sein de chaque itération. Nous abordons en particulier le cas où les opérateurs monotones sont des sous-différentiels de fonctions convexes, ce qui débouche sur de nouveaux algorithmes de minimisation. Les méthodes proposées unifient et dépassent largement l'état de l'art. Elles sont appliquées aux inclusions monotones composites en dualité, aux problèmes d'équilibre, au traitement du signal et de l'image, à la théorie des jeux, à la théorie du trafic, aux équations d'évolution, aux problèmes de meilleure approximation et à la décomposition de domaine dans les équations aux dérivées partielles.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00600967
Date27 May 2011
CreatorsBriceno-Arias, Luis M.
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0066 seconds