Return to search

Blast Retrofit of Unreinforced Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites

Unreinforced masonry (URM) walls are commonly found in existing and heritage buildings in Canada, either as infill or load-bearing walls. Such walls are vulnerable to sudden and brittle failure under blast loads due to their insufficient out-of-plane strength. The failure of such walls under blast pressures can also result in fragmentation and wall debris which can injure building occupants.
Over the years, researchers have conducted experimental tests to evaluate the structural behaviour of unreinforced masonry walls under out-of-plane loading. Various strengthening methods have been proposed, including the use of concrete overlays, polyurea coatings and advanced fiber-reinforced polymer (FRP) composites. Fabric-reinforced cementitious matrix (FRCM) is an emerging material which can also be used to strengthen and remove the deficiencies in unreinforced masonry walls. This composite material consists of a sequence of one or multiple layers of cement-based mortar reinforced with an open mesh of dry fibers (fabric). This thesis presents an experimental and analytical study which investigates the effectiveness of using FRCM composites to improve the out-of-plane resistance of URM walls when subjected to blast loading.
As part of the experimental program, two large-scale URM masonry walls were constructed and strengthened with the 3-plies of unidirectional carbon FRCM retrofit. The specimens included one infill concrete masonry (CMU) wall, and one load-bearing stone wall. The University of Ottawa Shock Tube was used to test the walls under gradually increasing blast pressures until failure, and the results were compared to those of control (un-retrofitted) walls tested in previous research. Overall, the FRCM strengthening method was found to be a promising retrofit technique to increase the blast resistance of unreinforced masonry walls. In particular, the retrofit was effective in increasing the out-of-plane strength, stiffness and ultimate blast capacity of the walls, while delaying brittle failure and reducing fragmentation.
As part of the analytical research, Single Degree of Freedom (SDOF) analysis was performed to predict the blast behaviour of the stone load-bearing retrofit wall. This was done by computing wall flexural strength using Plane Section Analysis, and developing an idealized resistance curve for use in the SDOF analysis. Overall, the dynamic analysis results were found to be in reasonable agreement with the experimental maximum displacements.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40530
Date21 May 2020
CreatorsJung, Hyunchul
ContributorsAoude, Hassan, Saatcioglu, Murat
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0023 seconds