Return to search

Cardiorespiratory fitness and virtual navigation in healthy older adults

One of the earliest symptoms of Alzheimer’s disease (AD) and age-related cognitive decline is topographical disorientation or impairment to spatial navigation. Furthermore, aging and AD are associated with cortical gray-matter thinning, particularly in the medial temporal and posterior cingulate regions, which have been associated with spatial navigation. Aerobic exercise has been well-established as a beneficial intervention to curtail the neurodegenerative effects of aging. This study aims to explore the relationship between cardiorespiratory fitness (CRF), and two markers of AD and cognitive aging, virtual navigation ability and cortical thickness of the entorhinal, parahippocampal and retrosplenial regions. Cross-sectional data utilized in this study was collected from 23 healthy older adults (60-80 years). Measures included in our analyses consisted of estimated VO2max, T1-weighted structural MR images, and behavioral performance on a virtual navigation task, measured as numbers of objects located during recall. Cortical thickness of the regions of interest (ROIs) was determined by processing T1-weighted MR images in FreeSurfer. We hypothesized that greater CRF would correlate with improved virtual navigation performance and greater cortical thickness of ROIs. Our analyses did not reveal statistically significant relationships between CRF and navigation performance or CRF and cortical thickness. However, Pearson’s correlations found right retrosplenial cortical (RSC) thickness and navigation performance to be significantly related. Multiple regression models of right RSC thickness and navigation performance were performed controlling for age, sex, education and task version. These analyses revealed that greater right RSC thickness predicted navigation performance. Additionally, this model showed that older age predicts decline in navigation performance. Our findings did not survive multiple comparisons correction; nonetheless, the results provide promising insight to the relationship between cortical thickness and navigation performance in healthy aging. Further cross-sectional and longitudinal investigations with a larger sample size are required to assess the impact of CRF and exercise on cortical thickness and navigation abilities in healthy aging. Understanding these relationships would contribute to the expansive body of literature that has linked CRF and exercise to neuroprotective mechanisms in the aging brain.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/41273
Date09 July 2020
CreatorsHussain Ismat, Karim
ContributorsSchon, Karin, Killiany, Ronald
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0017 seconds