La recherche scientifique concernant les polymères biosourcés augmente rapidement pendant les dernières années, poussée par des croissantes préoccupations écologiques et économiques, ainsi que par l'incertitude sur la disponibilité future de ressources pétrochimiques limitées. Durabilité est un mot-clé de ce processus. Dans ce cadre, des produits respectueux de l'environnement, y compris des molécules et des additifs eco-compatibles, sont maintenant recherchés pour remplacer les polymères à base de pétrole par ceux dérivés de matières premières naturelles.Les résines époxydes sont des polymères thermodurcissables très polyvalents, extrêmement résistants à la corrosion, à l'humidité et aux produits chimiques, avec une bonne force d'adhérence à la plupart des matériaux et un faible retrait lors du durcissement. En raison de leurs températures de transition vitreuse élevées et de leur excellente résistance mécanique, les résines époxydes sont largement utilisées dans une large gamme d'applications, telles que l'électronique, les adhésifs structuraux, les composites pour l'aérospatiale et les revêtements protecteurs.Actuellement, plus des deux tiers des résines époxydes sont à base de diglycidyl éther de Bisphénol A. Dans cette industrie, la tendance à remplacer les matériaux dérivés du pétrole par des matériaux biosourcés est également liée à la nécessité de remplacer le bisphénol A (BPA), une molécule controversée, reconnu comme un perturbateur endocrinien et une substance reprotoxique. En particulier en application comme revêtement, l'utilisation de BPA présente un risque pour les utilisateurs d'aliments et de boissons conditionnés dans des récipients traités avec des résines époxydes. Les effets de la contamination du corps humain causée par le BPA sont le diabète, maladies cardiovasculaires, modification des enzymes hépatiques et les lésions de l'appareil reproducteur. Pour ces raisons, cette molécule a été interdite dans de nombreux pays pour la fabrication de produits pour enfants, ainsi qu'en France et au Canada de tous les matériaux en contact direct avec les aliments. La nécessité de développer de nouvelles résines époxy est donc urgente.Les molécules bio-dérivées développées depuis maintenant présentent des structures chimiques les plus diverses, chacune d’elles produisant des propriétés différentes des polymères finaux. Les caractéristiques particulières des résines époxydes sont liées à la structure aromatique de ses composants. Les molécules aromatiques présentes dans les matières premières naturelles proviennent principalement de la lignine, un des principaux constituants des parois cellulaires naturelles. Cependant, pour extraire des fragments aromatiques de la lignine, des procédés difficiles et consommateurs d’énergie sont nécessaires. Un substitut précieux des molécules aromatiques, facilement récupérables du glucose, sont les molécules furaniques ; leur validité a été étayée par plusieurs études.À la lumière de ce qui précède, les travaux présentés ici sont focalisés sur la production de résines époxyde à base de furane comme substitut potentiel de DGEBA dans l’industrie du revêtement de boîtes de conserve. Le cycle complet du matériau a été étudié : des synthèses de monomères époxydes furaniques ont été proposées, puis des thermodurcis époxydes ont été obtenus et caractérisés à la fois dans leurs propriétés chimiques et physiques (étude de la cinétique de durcissement, des propriétés mécaniques et thermiques). En outre, l’application des matériaux thermodurcissables époxydes proposés comme revêtement interne des boîtes de conserve a été testée. / Research on bio-based polymers is rapidly increasing in last years, pushed by growing environmental and economic concerns, as well as by the uncertainty about future availability of finite petrochemical resources. Sustainability is a keyword in this process. In this frame, products that are respectful towards the environment, including eco-compatible building blocks and additives, are now researched to replace petroleum-based polymers with those derived from naturally occurring feedstocks. Epoxy resins are very versatile thermosetting polymers, extremely resistant to corrosion, moisture and chemicals, with good adhesive strength toward most materials (wettability) and low shrinkage upon curing. Due to their high glass transition temperatures and excellent mechanical strength, epoxy resins are widely employed in a broad range of applications, such as electronics, structural adhesives, aerospace composites and protective coatings. More than two-thirds of epoxy resins nowadays are based on diglycidyl ether of bisphenol A. In this industry the trend to replace petrol-derived materials with bio-based ones is related also to the necessity to substitute the Bisphenol A (BPA), a controversial building block recognized as an endocrine disrupter and reprotoxic substance. In particular in application as coating, the use of BPA results in hazard for customers of food and beverage products packed into containers treated with epoxy resins. The effects of human body contamination caused by BPA are diabetes, cardiovascular diseases, altered liver enzymes and reproductive apparatus damages. For these reasons, this molecule has been banned in many countries for the manufacturing of child products, and in France and Canada from all the materials in direct contact with food. The necessity to develop new epoxy resins results therefore urgent.Bio-derived molecules since now developed show the most various chemical structure, each of them producing different properties of final polymers. Peculiar characteristic shown by epoxy resins are related to the aromatic structure of its components. Aromatic molecules present in natural feedstock are mainly derived from lignin, one of the principal constituents of natural cell walls. However, to extract aromatic moieties from lignin, difficult and energy consuming processes are required. A valuable replacement of aromatic molecules, easily recoverable from glucose, are furanic molecules; their validity has been supported by several studies. In the light of the above, the work here presented is focused on production of furanic bio-based epoxy resins as potential substitute of DGEBA in can coating industry. The complete cycle of the material has been studied: the synthesis of furanic epoxy monomers and epoxy thermosets, the characterization of their chemical and physical properties (study of curing kinetics, mechanical and thermal properties). Furthermore, the application of bio-based epoxy thermosets as cans internal lining has been evaluated. Experimental results demonstrated that the obtained resins have good potential to be proposed as good alternatives to the traditional BPA-containing epoxy resins.
Identifer | oai:union.ndltd.org:theses.fr/2019AZUR4003 |
Date | 25 January 2019 |
Creators | Marotta, Angela |
Contributors | Côte d'Azur, Università degli studi di Napoli Federico II, Mija, Alice, Ambrogi, Veronica |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds