Return to search

Unbiased Expression Profiling Identifies a Novel Notch Signaling Target RND1 as Regulator of Angiogenesis

Notch signaling controls normal and pathological angiogenesis through transcriptional regulation of a wide network of target genes. Despite intensive studies of the endothelial Notch function, a comprehensive list of Notch-regulated genes, especially direct transcriptional targets, has not been assembled in endothelial cells (ECs). Here we uncovered novel EC Notch targets that are rapidly regulated by Notch signaling using several unbiased in vivo and in vitro screening approaches that captured genes regulated within 6 hours or less of Notch signal activation. We used a gamma-secretase inhibitor in neonates to profile Notch targets in the brain endothelium using the RiboTag technique, allowing for isolation of endothelial specific mRNA from a complex tissue without disrupting cell-cell contact. We used two types of primary cultured endothelial cells to define ligand-specific Notch targets by tethered-ligand stimulation. The identified Notch targets were validated by determining their regulation within one to two hours of EGTA-mediated Notch activation. By comparing significantly regulated genes in each of the screens, we assembled a comprehensive database of potential Notch targets in endothelial cells. Of particular interest, we uncovered G protein pathway related genes as potential novel Notch targets. We focused on a novel candidate target passing selection criteria after all screens, a small GTPase RND1.
RND1(Rho GTPase1) regulates cytoskeleton arrangement through Rho and Ras signaling. RND1 was validated as an endothelial Notch target in multiple endothelial cell types. In Human Umbilical Vein Endothelial Cells (HUVECs) we established angiogenic activity for RND1 that included regulation of cell migration towards VEGF and function in sprouting angiogenesis. We established that Notch and RND1 suppressed Ras activation but had no effects on Rho activation in HUVECs. These results demonstrate that RND1 expression is regulated by Notch signaling in endothelium and suggest that RND1 functions downstream of Notch in sprouting angiogenesis, revealing an unexplored role of endothelial Notch in regulating G protein pathways.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-pmrg-g821
Date January 2019
CreatorsDu, Jing
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0016 seconds