• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 11
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 25
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study on the role of polarity, Rho family GTPases, and cell fate in cytokinesis

Zhuravlev, Yelena January 2017 (has links)
Cytokinesis is the physical partition of one cell into two. In Chapter 1, I provide a brief introduction to cytokinesis and some of the proteins whose functions I parse out throughout my studies. In Chapter 2, I present work I’ve contributed to elucidate the role of polarity proteins in cytokinesis, as well as a look at the differential requirement for canonically essential cytokinetic proteins in the 4-cell embryo. In Chapter 3, I address a long-standing controversy in the field regarding the relationship between the Rac GAP protein Cyk-4 and the small GTPase Rac, and in particular the inhibitory role of Rac during cell division. My major body of work highlights the necessity not to close the books on the GAP activity of Cyk-4 and its inhibition of Rac. I show that Rac is unable to rescue cytokinesis failure in downstream Rho effectors whose loss weakens the contractile ring, suggesting it is not a promiscuous suppressor of cytokinesis. Additionally, I found that levels of non-muscle myosin-II and the actin binding domain of Utrophin were unchanged with loss of Cyk-4. From this, I infer that Cyk-4 is unlikely to be an activator of the RhoGEF Ect-2. These results emphasize the need to probe further into the cross-talk between these GTPases. In chapter 4, I show inconclusive data addressing the role of cell fate signaling in protection against cytokinesis failure. Overall, this thesis represents my contributions to the field, revealing the complexity involved in assuring successful completion of cytokinesis.
2

Cloning, characterization of chTC10, a Rho small GTPase, its regulation by Rel/NF-kappaB family members c-Rel and v-Rel, and its role in v-Rel-mediated transformation of fibroblasts

Tong, Shun. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
3

The role of RhoA GTPase activating protein DLC2 in painful diabetic neuropathy

Tirrell, Lee Sean January 2013 (has links)
Neuropathy is a major complication that affects nearly half of all patients with diabetes, greatly decreasing their quality of life. Patients experience a wide range of symptoms including pain, numbness, weakness and other morbidities. While its pathogenesis has been the focus of extensive research, there are still few effective treatment options available for this disease. The discovery of novel molecular targets underlying this diabetic neuropathy may lead to the development of new, more effective therapeutics. DLC2, a Rho GTPase-activating protein with specific activity for RhoA, was shown to be involved in pain signaling. Mice deficient for this protein (DLC2-/-) have increased RhoA activity in their peripheral nerves, and have heightened pain responses compared to wild type (DLC2+/+) in acute pain tests, displaying increased sensitivity to noxious thermal and inflammatory stimuli. DLC2-/- mice also show elevated blood glucose levels, lower body weight and increased sensitivity to blood glucose compared to wild type. Because of the hyperalgesia to acute pain displayed by DLC2-/- mice compared to wild type, and since the RhoA pathway is known to be involved in the pathogeneses and maintenance of diabetes and its complications, these mice were used to investigate more clinically relevant, chronic pain in a model of diabetic neuropathy. Streptozotocin (STZ), given in multiple low doses over five days (MLDS treatment), was used to induce diabetes in DLC2+/+ and DLC2-/- mice, and their pain responses were tested 8 weeks later. Diabetic DLC2-/- mice (DLC2-/--STZ) were hyperalgesic to thermal stimuli from the hot plate test compared to diabetic DLC2 wild type mice (DLC2+/+-STZ) and vehicle-treated controls of both genotypes (DLC2-/--Veh and DLC2+/+-Veh. Similar responses were seen from the von Frey filament test, where the DLC2-/--STZ group exhibited mechanical allodynia compared to the DLC2+/+-STZ group and both control groups. Dorsal root ganglia (DRG) were dissected from these four groups of mice for qPCR screening and protein analysis. DLC2-/--STZ mice showed significantly higher gene expression of the voltage-gated sodium channel Nav 1.9 compared to DLC2+/+-STZ mice, while there was a strong trend of increased levels in the DLC2-/--STZ group compared to both non-diabetic groups. Western blot analysis of the DRG from these mice shows increased levels of COX-2 expression of DLC2-/--STZ mice compared to DLC2+/+-Veh, and elevated levels of phosphorylated ERK (pERK) in DLC2-/--Veh and both diabetic groups compared to DLC2+/+-Veh. Overall, diabetic DLC2-/- mice have more severe painful diabetic neuropathy, with thermal hyperalgesia and mechanical allodynia. Increased RhoA activity and pERK, which are known to be involved in regulation, transcription and trafficking of sodium channels, may lead to increased Nav1.9 mRNA levels and activation. Localized mainly to nociceptors of the DRG, Nav1.9 is known to play a role in sensitizing neurons through lowering the threshold for action potentials, possibly leading to the observed heightened pain response. Additionally, elevated COX-2 levels in DLC2-/--STZ mice may lead to further deficits through activation of inflammatory responses. Future studies will further investigate how these mechanisms are involved in the altered pain response from diabetes. / published_or_final_version / Anatomy / Master / Master of Philosophy
4

Biophysical characterisation and mutational analysis of the binding of HR1 domains to Rho family G proteins

Hutchinson, Catherine Louise January 2012 (has links)
No description available.
5

Osteoclastogenesis: Roles of Filamin A and SBDS, and their Regulation of Rho GTPases during Pre-osteoclast Migration

Leung, Roland 17 December 2012 (has links)
Osteoclasts are multinucleated, bone resorbing cells that carry out their function using specialized actin-based structures called actin rings and podosomes. Rho GTPases function as molecular switches that regulate the actin cytoskeleton in osteoclasts and many other cell types. Filamin A (FLNa) and SBDS are two proteins that have the potential to interact with both F-actin and Rho GTPases, and thus regulate osteoclast formation, differentiation, or function. We found that in FLNa-null pre-osteoclasts, activation of RhoA, Rac1, and Cdc42 was perturbed, leading to defective pre-osteoclast migration prior to fusion. Ablation of SBDS resulted in the blockage of osteoclast differentiation downstream of RANK and defective RANKL-mediated upregulation of Rac2 that is required for pre-osteoclast migration. Therefore, both FLNa and SBDS are required to coordinate Rho GTPase activation during osteoclastogenesis, in addition to a role for SBDS in osteoclast differentiation downstream of RANK.
6

Osteoclastogenesis: Roles of Filamin A and SBDS, and their Regulation of Rho GTPases during Pre-osteoclast Migration

Leung, Roland 17 December 2012 (has links)
Osteoclasts are multinucleated, bone resorbing cells that carry out their function using specialized actin-based structures called actin rings and podosomes. Rho GTPases function as molecular switches that regulate the actin cytoskeleton in osteoclasts and many other cell types. Filamin A (FLNa) and SBDS are two proteins that have the potential to interact with both F-actin and Rho GTPases, and thus regulate osteoclast formation, differentiation, or function. We found that in FLNa-null pre-osteoclasts, activation of RhoA, Rac1, and Cdc42 was perturbed, leading to defective pre-osteoclast migration prior to fusion. Ablation of SBDS resulted in the blockage of osteoclast differentiation downstream of RANK and defective RANKL-mediated upregulation of Rac2 that is required for pre-osteoclast migration. Therefore, both FLNa and SBDS are required to coordinate Rho GTPase activation during osteoclastogenesis, in addition to a role for SBDS in osteoclast differentiation downstream of RANK.
7

Régulation de l’expression de Rnd3 dans les cellules tumorales / Regulation of Rnd3 expression in tumor cells

Piquet, Leo 01 December 2016 (has links)
La protéine Rnd3 est un membre atypique de la famille des Rho GTPases. Dénuée d’activité GTPasique, elle est ainsi constitutivement sous forme active et liée au GTP. La régulation de cette protéine ne passe donc pas par le cycle classique des Rho GTPases mais par d’autres mécanismes transcriptionnels, post-transcriptionnels ou encore traductionnels. Dans le carcinome hépatocellulaire (CHC), Rnd3 est significativement sous-exprimée, et cette sous-expression procure un avantage invasif aux hépatocytes. Ce projet de thèse avait pour objectif de déterminer plus précisément les mécanismes à la base de la régulation de Rnd3 dans les cellules tumorales, et notamment les cellules dérivées de carcinome hépatocellulaire. Les travaux de cette thèse ont été divisés en deux axes principaux. Dans une première partie, la régulation de Rnd3 par la β-caténine a été étudiée. En effet, la β-caténine est retrouvée mutée dans plus d’un tiers des CHC, et la présence de mutations activatrices de la β-caténine corrèle avec un faible niveau d’expression de Rnd3 dans les CHC. L’établissement d’un modèle original dans les cellules de CHC, HepG2, a permis d’étudier indépendamment l’implication de la β-caténine sauvage et la β-caténine mutée dans la régulation d’expression de Rnd3. Ce modèle a permis de mettre en évidence une régulation différentielle de Rnd3 par les deux formes de la β-caténine, la forme sauvage régulant Rnd3 au niveau transcriptionnel, et la forme mutée régulant Rnd3 au niveau post-transcriptionnel. La deuxième partie de ce travail, qui constitue la partie principale du projet, s’est intéressée à la régulation de Rnd3 par la voie de mécanotransduction MRTF/SRF. L’activation de cette voie de signalisation est très intimement reliée à l’organisation du cytosquelette d’actine, et cette voie régule en retour l’expression de nombreux gènes impliqués dans la dynamique de l’actine. Les résultats obtenus ont permis de déterminer Rnd3 comme une nouvelle cible directe de la voie MRTF/SRF dans les cellules tumorales, et placent Rnd3 au centre d’une boucle de régulation de cette voie de mécanotransduction. L’ensemble des résultats obtenus au cours de ce projet de thèse ont permis de mieux caractériser la régulation de l’expression de Rnd3 dans les cellules tumorales. / Rnd3 protein is an atypical member of the Rho GTPase family, devoid of GTPase activity and constitutively active and bound to GTP. Rnd3 regulation does not occur through the classical GTPase cycle but is achieved at transcriptional, posttranscriptional or translational level. Rnd3 is underexpressed in hepatocellular carcinoma (HCC), and this down-regulation increases HCC cell invasion and is linked to HCC progression. The aim of this thesis project was to better decipher the mechanisms involved in Rnd3 expression in tumor cells, and particularly in HCC cells. In a first part, Rnd3 regulation by β-catenin was studied. β-catenin is found mutated in one third of HCC, and activating β-catenin mutations in human HCC correlates with the lowest levels of Rnd3. An original model established in HepG2 cells allowed the study of the involvement of WT β-catenin versus mutated β-catenin in the regulation of Rnd3 expression.Interestingly, our results demonstrated that both forms of ß-catenin independently regulate Rnd3 mRNA expression. The WT β-catenin regulates Rnd3 at the transcriptional level, whereas the mutated β-catenin acts through the 3’UTR of Rnd3 mRNA. The second and main part of this thesis project was the study of the regulation of Rnd3 expression by the mechanotransduction pathway MRTF/SRF. The activation of this signaling pathway is tightly regulated by actin cytoskeleton, and the MRTF/SRF pathway directs in return the expression of a huge number of genes involved in actin dynamics. Our results uncovered Rnd3 as a new direct target of MRTF/SRF pathway in tumor cells. Indeed, upon actin dynamics changes, MRTF/SRF is able to bind Rnd3 promoter in order to favor its expression. As Rnd3 also acts as a regulator of the actin cytoskeleton, our results highlight Rnd3 at the center of a feedback loop of the MRTF/SRF mechanotransduction pathway. Taken together, all of the results obtained helped to better decipher the mechanisms of Rnd3 regulation in tumor cells.
8

Rôle du Rho-GEF Trio dans la division cellulaire / Role of Rho-GEF Trio in the cell division

Cannet, Aude 07 November 2014 (has links)
Durant la division cellulaire, la cellule subit des changements importants dans sa forme et son adhésion qui dépendent de l'efficacité du remodelage du cytosquelette d'actine. Ce processus est localement et temporellement régulé pour assurer le bon déroulement de la cytokinèse, l'étape finale de la division cellulaire. Il est contrôlé par les GTPases de la famille Rho via le remodelage du cytosquelette d'actine. Les Rho-GTPases fonctionnent comme des interrupteurs moléculaires, passant d'une forme au repos (liée au GDP) à une forme active (liée au GTP). La forme au repos interagit avec des facteurs d'échange, les GEFs (Guanine nucleotide Exchange Factors) qui déplacent le GDP et permet la fixation du GTP. Le retour à la forme inactive se fait par hydrolyse du GTP en GDP, stimulée par les protéines GAPs (GTPase Activating Proteins). RhoA est un régulateur positif de la cytokinèse, activée spécifiquement à l'équateur de la cellule, et qui promeut l'assemblage et la constriction de l'anneau d'actomyosine. En contraste, Rac1 a été proposée pour réguler négativement ce processus et doit être inactivée spécifiquement à l'équateur de la cellule pour le bon déroulement de la cytokinèse. Ainsi, une GAP de Rac1, MgcRacGAP, qui est localisé sur le fuseau central de microtubules, inactive Rac1 à l'équateur de la cellule. La déplétion de MgcRacGAP induit des défauts de cytokinèse qui peuvent être sauvés en co-déplétant Rac1. Cependant, le Rho-GEF activant Rac1 durant la division cellulaire n'a pas encore été identifié. Pour identifier un GEF régulant l'activité de Rac1 dans les cellules en division, nous avons réalisé une approche de « screening » par siRNA dans les cellules HeLa. Les Rac-GEFs sont déplétés par siRNA seul ou en combinaison avec un siRNA ciblant MgcRacGAP, dans le but d'identifier lesquels sont capables de sauver le nombre de cellules multinuclées induit par la déplétion de MgcRacGAP. De façon intéressante, la co-déplétion de MgcRacGAP et du Rho-GEF Trio, un GEF caractérisé principalement pour son rôle dans la croissance et le guidage axonal, entraîne une forte diminution du nombre de cellules multinuclées. Par la suite, nous démontrons que ce sauvetage du phénotype passe par la voie Trio-Rac1 en utilisant des mutants GEFs inactifs de Trio et un inhibiteur spécifique de l'activation de Rac1 par Trio. Ces résultats et le rôle de MgcRacGAP dans l'inactivation de Rac1 en cytokinèse, suggèrent que la déplétion de Trio pourrait sauver les défauts de cytokinèse induits par la déplétion de MgcRacGAP en diminuant l'activité de Rac1. Cela suggère aussi que Trio pourrait être un GEF de Rac1 dans les cellules en division. Pour directement tester si Trio pouvait fonctionner comme un GEF de Rac1 dans les cellules en division, la quantité de Rac1 a été mesurée par « pull-down assay » dans des cellules synchronisées en mitose. Comparé aux cellules traitées avec un siRNA contrôle, la déplétion de Trio réduit de moitié la quantité de Rac1 activée dans les cellules en mitose, démontrant que Trio active Rac1 en mitose. De plus, la déplétion de Trio induit des défauts de remodelage du cytosquelette d'actine dans les cellules en anaphase. De façon intéressante, la déplétion de Trio phénocopie la déplétion de Rac1 et de son effecteur Arp2/3, en accord avec un rôle de la voie Trio-Rac1 dans le contrôle du remodelage du cytosquelette d'actine dans les cellules en division. L'ensemble de ce travail a permis d'identifier pour la première fois un GEF contrôlant l'activité de Rac1 dans les cellules en division dont l'activité s'oppose à la fonction de MgcRacGAP en cytokinèse. Nous proposons ainsi un modèle dans lequel Trio contrôle l'activation de Rac1 et le remodelage du cytosquelette d'actine au cortex cellulaire dans les cellules en division. Dans notre modèle, MgcRacGAP s'oppose à l'action de Trio en inhibant localement et temporellement l'activation de Rac1 au plan de division, assurant ainsi le bon déroulement de la cytokinèse. / During cell division, cells undergo dramatic changes in shape and adhesion that depend on efficient actin cytoskeleton remodeling. This process has to be locally and temporally regulated to accurately ensure cytokinesis, the final stage of cell division. The small GTPases Rac1 and RhoA play an essential role in this process by controlling F-actin cytoskeleton remodeling. GTPases oscillate between an inactive, GDP-bound state and an active, GTP-bound state. They are activated by Guanine-nucleotide Exchange Factors (GEFs), which stimulate the GDP-to-GTP exchange, while they are turned off by GTPase-Activating Proteins (GAPs) which catalyse the hydrolysis of GTP. RhoA is a positive regulator of cytokinesis specifically activated at the division plane, which promotes the assembly and constriction of the actomyosin network. In contrast, Rac1 has been proposed to negatively regulate this process and has to be inactivated at the division plane for cytokinesis to occur properly. A central spindle localized GAP, MgcRacGAP, component of the centralspindlin complex, controls Rac1 inactivation at the cleavage plane. Depletion of Rac1 can suppress the cytokinesis failure induced by MgcRacGAP depletion. However, the Rho-GEF that activates Rac1 during cell division has not been identified yet. To identify a GEF regulating Rac1 activity in dividing cells, we performed a siRNA screening approach in HeLa cells. Rac-GEFs were depleted by siRNA alone or in combination with MgcRacGAP siRNAs, in order to identify the ones able to rescue the multinucleated cells induced by MgcRacGAP depletion. Importantly, co-depletion of MgcRacGAP and Rho-GEF Trio, a GEF characterized primarily for its role in axon outgrowth and guidance resulted in a strong decrease in the number of multinucleated cells. Then, we demonstrate that this rescue is mediated by the Trio-Rac1 pathway, using GEF dead mutants of Trio and a specific inhibitor of Rac1 activation by Trio. These data and the fact that MgcRacGAP was recently described to be essential for Rac1 inactivation in cytokinesis, suggest that Trio depletion could rescue the cytokinesis failure induced by MgcRacGAP depletion by decreasing Rac1 activity. It therefore suggests that Trio could be a GEF of Rac1 in dividing cells. To directly test if Trio could function as a GEF of Rac1 in dividing cells, the amount of activated Rac1 was monitored by pull down assay in synchronized mitotic cells. Compared to control siRNA-treated cells, Trio depletion reduced by half the amount of activated Rac1 in mitotic cells, showing that Trio activates Rac1 in mitosis. Strikingly, Trio depletion led to defects in F-actin cytoskeleton remodeling in anaphase cells. Indeed, the F-actin staining at the cortex was significantly reduced in Trio-depleted cells compared to control cells. Interestingly, Trio depletion phenocopied the depletion of Rac1, consistent with a role for the Trio-Rac1 pathway in controlling F-actin remodeling in dividing cells.Overall, this work identifies for the first time a GEF controlling Rac1 activation in dividing cells that counteracts MgcRacGAP function in cytokinesis. Based on these observations, we propose a model in which Trio functions as a GEF of Rac1 during cell division. Trio, which is expressed throughout the cell cycle, activates Rac1 to control F-actin cytoskeleton remodeling at the cell cortex of dividing cells. MgcRacGAP therefore counteracts the action of Trio by locally and temporally inhibiting Rac1 activation at the division plane, subsequently ensuring accurate cytokinesis.
9

The interaction of the α2 chimaerin SH2 domain with target proteins

Ferrari, Giovanna Maria January 1999 (has links)
No description available.
10

Engineering Synthetic Control over Rho GTPases using Ca2+ and Calmodulin Signaling

Mills, Evan 18 December 2012 (has links)
Engineered protein systems have been created to impart new functions, or “re-program” mammalian cells for applications including cancer and HIV/AIDS therapies. The successful development of mammalian cells for re-programming will depend on having well-defined, modular systems. Migration is a particularly important cell function that will determine the efficiency and efficacy of many re-programming applications in vivo, and Rho proteins are responsible for regulation of cell migration natively. While there have been several reports of photo-activated Rho proteins, no strategy has been developed such that Rho proteins and cell migration can be controlled by a variety of extracellular stimuli that may be compatible with signaling in large organisms. Here, several methods are described for engineering Ca2+-sensitive Rho proteins so that the large, natural toolbox of Ca2+-mobilizing proteins can use the Ca2+ intermediate to activate Rho proteins in response to a variety of exogenous stimuli, including chemicals, growth factors, and light. First, an unreported calmodulin binding site was identified in RhoA. This knowledge was used to create a tandem fusion of RhoA and calmodulin that mediated Ca2+-sensitive bleb retraction in response to a variety of Ca2+-elevating chemicals. Ca2+-mobilizing modules including channelrhodopsin-2 and nicotinic acetylcholine receptor α4 were used for light- and acetylcholine-dependent bleb retraction. Second, a more robust morphology switch was created by embedding a calmodulin binding site into RhoA to enable Ca2+-responsive bleb formation. A wider range of Ca2+-mobilizing modules were also used here including LOVS1K/Orai1 and vascular endothelial growth factor 2. Combining Ca2+-mobilizing and Ca2+-responsive modules increased amoeboid-like cell migration in wound closure and transwell assays. Finally, the embedded peptide design was applied to Rac1 and Cdc42 to enable control of new morphologies and migration modes. The modular Ca2+ control over Rho proteins developed here is an important contribution to cell re-programming because it shows that control over cell migration can be rewired in a way that is flexible and tunable.

Page generated in 0.0437 seconds