This thesis deals with the problem of estimating the velocity of a mobile station (MS)in a mobile communication system using the instantaneous frequency (IF) of the received signal at the MS antenna. This estimate is essential for satisfactory handover performance, effective dynamic channel assignment, and optimisation of adaptive multiple access wireless receivers. Conventional methods for estimating the MS velocity are based either on the statistics of the envelope or quadrature components of the received signal. In chapter 4 of the thesis, we show that their performance deteriorates in the presence of shadowing. Other velocity estimators have also been proposed which require prior estimation of the channel or the average received power. These are generally difficult to obtain due to the non-stationary nature of the received signal. An appropriate window which depends on the unknown MS velocity must first be applied in order to accurately estimate the required quantities. Using the statistics of the IF of the received signal at the MS antenna given in chapter 3, new velocity estimators are proposed in chapter 4 of this thesis. The proposed estimators are based on the moments, zero-crossing rate, and covariance of the received IF. Since the IF of the received signal is not affected by any amplitude distortion, the proposed IF-based estimators are robust to shadowing and propagation path-loss. The estimators for the MS velocity in a macro- and micro-cellular system are presented separately. A macro-cell system can be considered as a special case of a micro-cell in which there is no line-of-sight component at the receiver antenna. It follows that those estimators which are derived for micro-cells can be used in a macro-cell as well. In chapter 4, we analyse the performance of the proposed velocity estimators in the presence of additive noise, non-isotropic scattering, and shadowing. We also prove analytically that the proposed velocity estimators outperform the existing methods in the presence of shadowing and additive noise. The proposed IF-based estimators need prior estimation of both the IF of the received signal and Ricean K-factor. The IF estimation in a typical wireless environment, can be considered as a special case of a general problem of IF estimation in the presence of multiplicative and additive noise. In chapter 5, we show that current time-frequency approaches to this problem which are based on the peak of a time-frequency distribution (TFD) of the signal, fail because of the special shape of the power spectral density of the multiplicative noise in a wireless environment. To overcome this drawback, the use of the first-order moment of a TFD is studied in chapter 5. Theoretical analysis and simulations show that the IF estimator based on the first-order moment of a TFD exhibits negligible bias when the signal-to-additive noise ratio is more than 10 dB. The Ricean K-factor is not only necessary for velocity estimation in micro-cells, but also is a measure of the severity of fading and a good indicator of the channel quality. Two new methods for estimating the Ricean K-factor based on the first two moments of the envelope of the received signal, are proposed in chapter 6. Performance analysis presented in chapter 6, prove that the proposed K estimators are robust to non-isotropic scattering. Theoretical analysis and simulations which are presented in chapters 4 and 7 of this thesis, prove that the proposed velocity and K estimators outperform existing estimators in the presence of shadowing and additive noise.
Identifer | oai:union.ndltd.org:ADTP/264800 |
Date | January 2003 |
Creators | Azemi, Ghasem |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Ghasem Azemi |
Page generated in 0.0019 seconds