Es ist wohlbekannt, dass der Kleinste-Quadrate-Schätzer im Falle vorhandener Multikollinearität eine große Varianz besitzt. Eine Möglichkeit dieses Problem zu umgehen, besteht in der Verwendung von verzerrten Schätzern, z.B den Ridge-Schätzer. In dieser Arbeit wird ein neues Schätzverfahren vorgestellt, dass auf Addition einer kleinen Konstanten omega auf die Regressoren beruht. Der dadurch erzeugte Schätzer wird in Abhängigkeit von omega beschrieben und es wird gezeigt, dass dessen Mean Squared Error kleiner ist als der des Kleinste-Quadrate-Schätzers im Falle von stark korrelierten Regressoren. / It is well known, that the least squares estimator performs poorly in the presence of multicollinearity. One way to overcome this problem is using biased estimators, e.g. ridge regression estimators. In this study an estimation procedure is proposed based on adding a small quantity omega on some or each regressor. The resulting biased estimator is described in dependence of omega and furthermore it is shown that its mean squared error is smaller than the one corresponding to the least squares estimator in the case of highly correlated regressors.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2949 |
Date | January 2009 |
Creators | Wissel, Julia |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0151 seconds