Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-10-17T16:30:00Z
No. of bitstreams: 1
2016 - Maur?cio de Carvalho.pdf: 8945176 bytes, checksum: 4b68e7d4395ffbaee8b4d17639d8a28e (MD5) / Made available in DSpace on 2017-10-17T16:30:00Z (GMT). No. of bitstreams: 1
2016 - Maur?cio de Carvalho.pdf: 8945176 bytes, checksum: 4b68e7d4395ffbaee8b4d17639d8a28e (MD5)
Previous issue date: 2016-04-12 / CAPES / In this work we consider the injection of water with dissolved ions into a linear horizontal porous rock cylinder with constant porosity and absolute permeability initially containing oil and water in several proportions. The water is assumed to have low salinity concentration, where some ions are dissolved. We disregard that there is in the rocks some possible minerals that can dissolve or precipitate in water phase. There are two chemical fluid components as well as two immiscible phases: water and oil, (w, o). The dissolved ions are: positive divalent ions: calcium ions, Ca2+ and magnesium ions, Mg2+; negative divalent ions: sulphate ions, SO42?; positive monovalent ions: sodium ions, Na+; negative monovalent ions: cloride ions, Cl?. The cations are modeled to be involved in fast ion exchange process with a surface negative X? which can absorb the positive ions, Ca2+, Mg2+ and Na+. We use simple mixing rules and we disregard any heat of precipitation/dissolution of substance reactions or ion desorption. Moreover we disregard any volume contraction efects resulting from mixing and reactions in any phase. We are going to solve in this work, the Riemann problem and we are going to discuss some features about the studied model. / Neste trabalho consideramos a inje??o de ?gua com ?ons dissolvidos em um meio po-roso linear horizontal cil?ndrico com porosidade e permeabilidade absoluta constantes, inicialmente, contendo ?leo e ?gua em v?rias propor??es. A ?gua ? assumida ter baixa concentra??o de sais, onde alguns ?ons est?o dissolvidos. Desconsideramos a exist?ncia de alguns poss?veis minerais na rocha que possam dissolver ou precipitar na fase da ?gua. Existem dois componentes qu?micos fluidos assim como duas imisc?veis fases: ?gua e ?leo,(w, o). Os ?ons dissolvidos s?o: ?ons divalentes positivos: ?ons c?lcio, Ca2+ e ?ons magn?sio, Mg2+; ?ons negativos divalentes: ?ons sulfato, SO42?; ?ons positivos monovalentes: ?ons s?dio, Na+; ?ons negativos monovalentes: ?ons cloro, Cl?. Os c?tions est?o envolvidos em um processo r?pido de troca de ?ons com a superf?cie do meio poroso carregada eletronega-tivamente X?, onde o meio absorver? os ?ons positivos Ca2+, Mg2+ e Na+. Usando regras simples de misturas e desconsiderando qualquer calor de precipita??o ou dissolu??o de rea??es de subst?ncias ou dessor??o de ?ons. Al?m disso, desconsideramos quaisquer efeitos de contra??o de volume resultante das misturas e rea??es em qualquer fase. Resolveremos neste trabalho, o Problema de Riemann e discutiremos algumas caracter?sticas do modelo estudado.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/2095 |
Date | 12 April 2016 |
Creators | CARVALHO, Maur?cio de |
Contributors | Lambert, Wanderson Jos?, Concei??o Junior, Duilio Tadeu da, Lambert, Wanderson Jos?, Oliveira, Rosane Ferreira de, Cruz, Amaury Alvarez |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional, UFRRJ, Brasil, Instituto de Ci?ncias Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1 Appelo, C. A. J., Postma, D., Geochemistry, groundwater and polution, Second Edition, CRC Press, 2005. Citado na p?gina 29. 2 Buckley, S. E., Leverett, M. C., Mechanism of fluid displacement in sands, Trans. AIME, v. 146, 1942. Citado 2 vezes nas p?ginas 40 e 68. 3 Crag, F. F. Jr., The Reservoir Engineering Aspects of Waterflooding, Monograph Series, SPE, Richardson, TX, 1971. Citado na p?gina 29. 4 Dafermos, C., Hyperbolic Conservation Laws in Continuum Physics, EUA: Springer Verlag, 2010. Citado na p?gina 66. 5 Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Paris: Victor Dalmont, 1856. Citado 2 vezes nas p?ginas 14 e 21. 6 Duijn, C. J., An Introduction to Conservation Laws: Theory and Applications to Multi-Phase Flow, Eindhoven University of Technology, Eindhoven, 2003. Citado 2 vezes nas p?ginas 25 e 66. 7 Hiorth, A., Cathles, L. M., Madland, M. V., The Impact of Pore Water Chemistry on Carbonate Surface Charge and OilWettability, Springer Science, 2010. Citado 2 vezes nas p?ginas 28 e 30. 8 Lager, A., Webb, K. J. and Richmond, D. M., LoSal Enhanced Oil Recovery: An Experimental Investigation, Paper SPE 113946-MS, 2008. Citado na p?gina 14. 9 Leveque, R. J. , Numerical Methods for Conservation Laws, Birkhauser, Second dition, 1994. Citado 6 vezes nas p?ginas 9, 14, 15, 38, 49 e 67. 10 Ligthelm, D. J., Hofman, J., Brussee, N., Marcelis, F. and Linde, H., Novel Waterflooding Strategy by Manipulation of Injection Brine Composition, Paper SPE 119835-MS, 2009. Citado na p?gina 14. 11 Lima, L. E., Curso de An?lise, Vol. 1, Projeto Euclides, IMPA, 2006. Citado na p?gina 20. 12 Lambert, W. J., Riemann solutions of balance system with phase change for thermal flow in porous media., Doctoral Thesis, IMPA, 2006. Citado na p?gina 13. 13 Morrow, N. R., Valat, M. and Yidliz, H., Effect of Brine Composition on recovery of an Alaskan Crude Oil by Waterflooding, Paper 96-94, 1996. Citado na p?gina 14. 14 Olav, D., Thormod, J., Aslak, T. e Ragnar, W., Multicomponent Chromatography in a Two Phase Environments, SIAM Journal on Applied Mathmatics, Vol. 52, No. 1, February 1992. Citado na p?gina 42. 15 Omekeh, A., Friis, H. A., Fjelde, I. e Evje, S., Modeling of Ion-Exchange and Solubility in Low Salinity Water Flooding, Society of Petroleum Engineers, Paper SPE 154144, 2012. Citado 5 vezes nas p?ginas 14, 21, 28, 29 e 76. 16 Patil, S. B., Dandekar, A. Y., Patil, S. and Khataniar, D., Low Salinity Brine Injection for EOR on Alaska North Slope (ANS), Paper 12004-MS, 2008. Citado na p?gina 14. 17 Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation, Developments in Petroleum Science 6, Elsevier Scientific Publishing Compay, 1977. Citado na p?gina 21. 18 Sharma, M. M. and Filoco, P. R., Effect of Brine Salinity and Crude-oil Properties on Oil Recovery and Residual Saturations, SPE Journal, 5(3):293-300, 2000. Citado na p?gina 14. 19 Skoog, West, Holler, Crouch, Fundamentos da Qu?mica Anal?tica, Tradu??o da 8a Edi??o norte-americana, Thomson, 2014. Nenhuma cita??o no texto. 20 Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983. Citado 4 vezes nas p?ginas 14, 25, 59 e 67. 21 Stewart, J., C?lculo, Vol. 2, Tradu??o da 7a Edi??o norte-americana, Cengage Learning, 2014. Citado na p?gina 20. 22 Tang, G. Q. and Morrow, N. R., Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interations and Oil Recovery, SPE Journal, 24(2-4):99-111, 1999. Citado na p?gina 14. 23 Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics - A Pratical Introduction, 2a Edi??o, Springer, 1999. Citado 4 vezes nas p?ginas 14, 17, 60 e 67. 24 Tzimas, E., Enhanced Oil Recovery using Carbon Dioxide in the European Energy System, European Commission Joint Research Center, 2005. Citado na p?gina 13. 25 Webb, K. J., Black, C. J. J. and Al-Ajeel, H., Low Salinity Oil Recovery - Log-Inject-Log, Paper SPE 89379-MS, 2004. Citado na p?gina 14. |
Page generated in 0.0027 seconds