The study of coherent states (CS) for a quantum mechanical system has received a lot of attention. The definition, applications, generalizations of such states have been the subject of work by researchers. A common starting point of all these approaches is the observation of properties of the original CS for the harmonic oscillator. It is well-known that they are described equivalently as (a) eigenstates of the usual annihilation operator, (b) from a displacement operator acting on a fundamental state and (c) as minimum uncertainty states. What we observe in the different generalizations proposed is that the preceding definitions are no longer equivalent and only some of the properties of the harmonic oscillator CS are preserved. In this thesis we propose to study a new class of coherent states and its properties. We note that in one example our CS coincide with the ones proposed by Glauber where a set of three requirements for such states has been imposed. The set of our generalized coherent states remains invariant under the corresponding time evolution and this property is called temporal stability. Secondly, there is no state which is orthogonal to all coherent states (the coherent states form a total set). The third property is that we get all coherent states by acting on one of these states ['fiducial vector'] with operators. They are highly non-classical states, in the sense that in general, their Bargmann functions have zeros which are related to negative regions of their Wigner functions. Examples of these coherent states with Bargmann function that involve the Gamma and also the Riemann ⲝ functions are represented. The zeros of these Bargmann functions and the paths of the zeros during time evolution are also studied.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582956 |
Date | January 2011 |
Creators | Mohamed, Abdlgader |
Contributors | Vourdas, Apostolos |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/5724 |
Page generated in 0.0012 seconds