Return to search

Nonlinear Riemann-Hilbert Problems

Riemann-Hilbert-Probleme sind Randwertaufgaben für im Einheitskreis $\mathbb D$ holomorphe Funktionen $w$, deren Randwerte $w(t)$ auf gewissen Kurven $M_t$ liegen sollen. Ein Teil der Untersuchungen ist dem Fall explizit gegebener Kurven gewidmet. Dabei werden bekannte Resultate über glatte Kurven auf stetige Restriktionskurven erweitert, und die Existenz von Lösungen in gewissen Hardy-Räumen gezeigt. Die Eindeutigkeitsfrage führt auf ein Gegenbeispiel, das zugleich eine Vermutung aus einer Dissertation von Belch widerlegt. Der andere Teil der Untersuchungen ist dem klassischen Fall geschlossener Restriktionskurven gewidmet. Hier steht statt der Abschwächung von Glattheitsvoraussetzungen die Formulierung geeigneter Nebenbedingungen im Mittelpunkt. Die Abhängigkeit der Lösung von Zusatzbedingungen erweist sich als Verallgemeinerung des Verhaltens von Blaschkeprodukten. Für drei Interpolationpunkte kann charakterisiert werden, wann durch sie eine Lösung mit Windungszahl 1 verläuft, durch $k$ Interpolationspunkte wird die Existenz einer Lösung mit Windungszahl $k-1$ gezeigt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22506
Date13 December 2004
CreatorsSemmler, Gunter
ContributorsWegert, Elias, von Wolfersdorf, Lothar, Ruscheweyh, Stephan, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds