Following the global financial crisis, both risk-based and heuristic portfolio construction methods have received much attention from both academics and practitioners since these methods do not rely on the estimation of expected returns and as such are assumed to be more stable than Markowitz's traditional mean-variance portfolio. In 2016, Lopéz de Prado presented the Hierarchical Risk Parity (HRP), a new approach to portfolio construction which combines hierarchical clustering of assets with a heuristic risk-based allocation strategy in order to increase stability and improve out-of-sample performance. Using Monte Carlo simulations, Lopéz de Prado was able to demonstrate promising results. This thesis attempts to evaluate HRP using walk-forward analysis and historical data from equity index and bond futures, against more realistic benchmark methods and using additional performance measures relevant to practitioners. The main conclusion is that applying hierarchical clustering to risk-based portfolio construction does indeed improve the out-of-sample return and Sharpe ratio. However, the resulting portfolio is also associated with a remarkably high turnover, which may indicate numerical instability and sensitivity to estimation errors. It is also identified that Lopéz de Prado's original HRP approach has an undesirable property and alternative approaches to HRP have consequently been developed. Compared to Lopéz de Prado's original HRP approach, these alternative approaches increase the Sharpe ratio with ~10% and reduce the turnover with 60-65%. However, it should be noted that compared to more mainstream portfolios the turnover is still rather high, indicating that these alternative approaches to HRP are still somewhat unstable and sensitive to estimation errors. / Efter den globala finanskrisen har intresset för riskbaserade och heuristiska metoder för portföljallokering ökat inom såväl akademin som finansindustrin. Det ökade intresset grundar sig i att dessa metoder inte kräver estimering av förväntad avkastning och därför kan antas vara mer stabila än portföljer med grund i Markowitz moderna portföljteori. Lopéz de Prado presenterade 2016 en ny metod för portföljallokering, Hierarchical Risk Parity (HRP), som kombinerar hierarkisk klustring med en heuristisk riskbaserad portföljkonstruktion och vars syfte är att öka stabiliteten och förbättra avkastningen. Baserat på Monte Carlo-simuleringar har Lopéz de Prado lyckats påvisa lovande resultat. Syftet med detta examensarbete är att utvärdera HRP med hjälp av walk-forward-analys och empirisk data från aktieindex- och obligationsterminer. I denna utvärdering jämförs HRP med andra vanliga portföljmetoder med avseende på prestandamått relevanta för portföljförvaltare. Den huvudsakliga slutsatsen är att tillämpning av hierarkisk klustring inom ramen för riskbaserad portföljallokering förbättrar såväl den absoluta avkastningen som Sharpekvoten. Däremot är det tydligt att vikterna i en HRP-portfölj har hög omsättning över tid, vilket kan tyda på numerisk instabilitet och hög känslighet för skattningsfel. Vidare har en oönskad egenskap i Lopéz de Prados ursprungliga HRP-metod identifierats, varför två alternativa HRP-metoder har utvecklats inom ramen för examensarbetet. Jämfört med Lopéz de Prados ursprungliga metod förbättrar de två alternativa metoderna Sharpekvoten med 10% och minskar omsättningen av portföljvikterna med 60-65%. Det bör dock understrykas att även de nya metoderna har en förhållandevis hög omsättning, vilket tyder på att numerisk instabilitet och hög känslighet för skattningsfel till viss del fortfarande kvarstår.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-304668 |
Date | January 2021 |
Creators | Nanakorn, Natasha, Palmgren, Elin |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:200 |
Page generated in 0.0031 seconds