Return to search

Évaluation des mesures de ruine dans le cadre de modèles avancés de risque

La théorie du risque consiste en l'étude de modèles décrivant le processus de surplus d 'une compagnie d 'assurance. L'évaluation de différentes mesures de ruine dans le cadre de ces modèles permet d'obtenir une idée générale de la santé financière de la compagnie d'assurance et du risque assumé par celle-ci. Le modèle classique de risque pour décrire les arrivées et les coûts des sinistres est le modèle Poisson composé. Ce modèle est basé sur une hypothèse d 'indépendance entre le montant des sinistres et le temps écoulé entre chacun. Cette hypothèse facilite le calcul des mesures de ruine mais peut s'avérer trop restrictive dans différents contextes. L'objectif principal de cette thèse est l'étude d'extensions du modèle classique dans lesquelles sont introduites une structure de dépendance entre la sévérité et la fréquence des sinistres. La copule de Farlie-Gumbel-Morgenstern et une extension de cette copule sont utilisées pour définir cette structure. En raison de la forme et de la flexibilité de ces copules, il est possible d'adapter les outils développés récemment en théorie du risque dans l'évaluation et l'analyse des mesures de ruine. La fonction de Gerber-Shiu et certains cas particuliers de cette fonction , comme la transformée de Laplace du temps de la ruine et l'espérance de la valeur actualisée du déficit à la ruine sont étudiées dans le cadre de ces extensions. On s'intéresse également à l'évolution du processus de surplus en présence d'une barrière horizontale. Les mesures de ruine citées plus haut, ainsi que le montant total actualisé des dividendes distribués sont évaluées. / [Copule de Farlie-Gumbel-Morgenstern ; Modèle Poisson composé]

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/20493
Date13 April 2018
CreatorsMarri, Fouad
ContributorsMarceau, Étienne, Cossette, Hélène
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format160 f., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds