Ethernet as the communication medium in the enterprise data center has outlived all competing mediums and resisted the test of time with regards to speed and costs. The future is also poised for growth with 40 and 100Gps speeds just over horizon. The current state of the technology is being enhanced and extended with lossless features to allow for fabric convergence of Storage and Inter Process Communication (IPC) Networks. It is under this medium that an increase in the adoption of Remote Direct Memory Access (RDMA) over Ethernet using offloaded TCP/IP (iWARP) and Infiniband over Ethernet (RoCE) communication stacks to RDMA capable NIC adapter s (RNIC) is observed.
RDMA enables direct application to application communication over the network resulting in numerous and significant benefits such as reduced CPU utilization, lower latency communications, increased energy efficiency, and reduced overall system requirements. However, with said benefits also comes increased software complexity in how RDMA interface users communicate. The RDMA communication semantics, which originate from the HPC domain, are heavily biased towards Low-Latency and High-Bandwidth communications rather than Reliability, Availability, and Serviceability (RAS). As adoption increases, and enterprise data centers begins to leverage RDMA over Ethernet, enhancements to the OS stack software architecture and design of the components involved is required to address these deficiencies. Operating system interfaces, device drivers, adapter hardware design, and embedded firmware features must be viewed from a high-availability and maintainability point of view.
RAS enhancements for RDMA communications proposes the software architectural tradeoffs for enhancing the iWARP and RoCE RDMA implementations for communications in the enterprise data center, with new and traditional RAS features for existing communications stacks and devices. The architecture leverages software enhancements in traceability, availability, maintainability, serviceability, fault-isolation and resource management; such that in the advent of errors, the probability that the forensics data points to identify root cause are immediately and automatically available is increased. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2270 |
Date | 21 February 2011 |
Creators | Cardona, Omar |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0017 seconds