Motion planning is an essential component of an autonomous system. This project aims to design a motion planning module to automate the screwing process of radio units. The goal is to choose and implement a motion planner that provides the speed, precision, and efficiency required for the screwing task on a radio filter with a large number of holes located close to each other. Four control-based motion planners were investigated on a 6 Degrees Of Freedom (DOF) robot arm in Robot Operating System (ROS). The investigated motion planners are Rapidly-exploring Random Trees, The Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE), The Path- Directed subdivision Trees (PDST), Expansive Space Trees (EST). All these planners are available in The Open Motion Planning Library (OMPL). The motion planners were implemented on a simulated version of a UR5 robot arm. This simulated model is generated by the MoveIt Setup Assistant, which is the primary tool for creating configuration files for kinematics chains in MoveIt. ROS is the chosen platform to design various control methods and motion planning algorithms. Hence two primary workspaces have been created. These workspaces contain several packages and nodes with multiple tasks such as motion planning, visualization, and data extraction. All the nodes communicate using ROS communication tools such as massages services and action client services. Furthermore, this project covers also test and benchmarking all the mentioned planners to determine which planner provides optimal performance in different environments. The planner’s performance is evaluated by designing two experiments in three benchmarking scenarios. The first test is intended to determine how the planners perform a motion planning task similar to an actual screwing process of a radio filter. The purpose of the second experiment is to investigate how the planners perform as the density of the obstacles increase. The performances of the planners have been analyzed and compared with each other using different benchmarking tools such as the planner arena. Result of this project indicates, KPIECE and EST can outperform the state-of-the- art planner, RRT-Connect in some and metrics, especially in an environment with a low obstacles density. However, RRT-Connect is still superior in more dense and complicated settings. / Rörelseplanering är en viktig komponent i ett automatiserat system. Detta projekt syftar till att designa en rörelseplaneringsmodul för att automatisera skruvningen av radioenheter. Målet är att implementera en rörelseplanerare som kan frambringa den hastighet, noggrannhet och effektivitet som krävs för en automatiserad skruvdragare. Skruvdragarens uppgift är att skruva ett antal hål placerade nära varandra på en radiofilter. Denna upsats har undersökt fyra kontrollbaserade rörelseplanerare på en 6 Degrees Of Freedom (DOF) robotarm med hjälp av Robot Operating System (ROS). De undersökta rörelseplanerarna är Rapidly-Exploring Random Trees, The Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE), The Path- Directed subdivision Trees (PDST) och Expansive Space Trees (EST)som är tillgängliga i Open Motion The Open Motion Planning Library (OMPL). Planerarna implementeras på en simulerad UR5-robotarm, genererad av MoveIt Setup Assistant, som är det primära verktyget för att skapa konfigurationsfiler för kinematikkedjor i MoveIt. ROS är den valda plattformen för att designa styrmetoder och rörelseplaneringens algoritmer vilket medför att två arbetsytor har skapats. Dessa arbetsytor innehåller flera paket och noder med flera uppgifter bland annat rörelseplanering, visualisering och dataextraktion. Alla noder kommunicerar med varandra genom ROS kommunikationsverktyg liksom massagetjänster och action-client tjänster. Detta projekt omfattar även benchmarkingäv alla ovannämnda planerare för att avgöra vilken of dessa planerare kan åstadkomma en optimal prestanda i olika miljöer. Planerarens prestanda utvärderas genom att designa två experiment i tre benchmarking-scenarier. Det första testet är avsett att bestämma hur en planerare utför en rörelseplaneringsuppgift vilket liknar en verklig skruvprocess för en radioenhet. Andra experimentet är att undersöka hur planerarna presterade när tätheten av hindren ökar. Planerarnas prestationer har analyserats och jämförts med varandra med hjälp av olika benchmarkingverktyger, till exemple Planer Arena. Enligt resultatet av detta projekt kan KPIECE och EST prestera bättre jämfort med den senaste planeraren RRT-Connect i vissa områden, särskilt i ett miljö med låg hindertäthet. RRT-Connect är dock fortfarande överlägsen i mer täta och komplicerade miljöer.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-308528 |
Date | January 2022 |
Creators | Ahmadi, Seyedhesam |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:13 |
Page generated in 0.003 seconds