Objektföljning kan användas inom allt från större sportevenemang, smarta bilar och kameraövervakning till bekämpning av malariainfekterade myggor. Tekniken fungerar på så vis att en datoranalys utförs på uppfångade bilder, vilka i de flesta fall har tagits av en digitalkamera. Under analysen görs en bedömning om objektet man vill följa finns i bilden och var i bilden det befinner sig. Det ger datorn ett sätt att se och identifiera objekt, så kallad maskinseende. I den här studien undersöks objektidentifiering när metoden färgidentifikation och kantdetektering tillsammans med Hough circle transform implementeras i en kompakt enkortsdator av modell Raspberry Pi. Enkortsdatorn ska även skicka objektets centrumposition till en mikrokontroller av typ Arduino, som är fristående från det här pappret men den ska rikta in en laserpekare mot centrumpositionen på en måltavla. Utöver implementeringen av objektföljningen skall även en plattform konstrueras för att kunna användas av Syntronic AB i demonstreringssyfte. Plattformen består av tre måltavlor med fotoresistorer och en digitalkamera. Digitalkameran är tillsammans med en laserpekare monterad på en liten servomotorstyrd plattform som kan panorera och luta.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-36006 |
Date | January 2020 |
Creators | Rönnholm, Robin |
Publisher | Högskolan i Gävle, Elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds