Return to search

Teamwork in a swarm of robots: an experiment in search and retrieval

In this thesis, we investigate the problem of path formation and prey retrieval in a swarm of robots. We present two swarm intelligence control mechanisms used for distributed robot path formation. In the first, the robots form linear chains. We study three variants of robot chains, which vary in the degree of motion allowed<p>to the chain structure. The second mechanism is called vectorfield. In this case,<p>the robots form a pattern that globally indicates the direction towards a goal or<p>home location. Both algorithms were designed following the swarm robotics control<p>principles: simplicity of control, locality of sensing and communication, homogeneity<p>and distributedness.<p><p>We test each controller on a task that consists in forming a path between two<p>objects—the prey and the nest—and to retrieve the prey to the nest. The difficulty<p>of the task is given by four constraints. First, the prey requires concurrent, physical<p>handling by multiple robots to be moved. Second, each robot’s perceptual range<p>is small when compared to the distance between the nest and the prey; moreover,<p>perception is unreliable. Third, no robot has any explicit knowledge about the<p>environment beyond its perceptual range. Fourth, communication among robots is<p>unreliable and limited to a small set of simple signals that are locally broadcast.<p><p>In simulation experiments we test our controllers under a wide range of conditions,<p>changing the distance between nest and prey, varying the number of robots<p>used, and introducing different obstacle configurations in the environment. Furthermore,<p>we tested the controllers for robustness by adding noise to the different sensors,<p>and for fault tolerance by completely removing a sensor or actuator. We validate the<p>chain controller in experiments with up to twelve physical robots. We believe that<p>these experiments are among the most sophisticated examples of self-organisation<p>in robotics to date. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210476
Date24 September 2008
CreatorsNouyan, Shervin
ContributorsDorigo, Marco, Birattari, Mauro, Winfield, Alan, Stützle, Thomas, Nardone, Pasquale, Deneubourg, Jean-Louis
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des sciences appliquées – Informatique, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v., No full-text files

Page generated in 0.0024 seconds