Combustion devices are prone to combustion instabilities. They arise from a constructive coupling between the unsteady heat release rate of the flame and the resonant acoustic modes of the entire system. The occurence of such instabilities can pose a threat to both performance and integrity of combustion systems. Although these phenomena have been known for more than a century, avoiding their appearance in industrial engines is still challenging. The objective of this thesis is threefold: (1) study the dynamics of the resonant acoustic modes, (2) investigate the flame response of a liquid rocket engine under unstable conditions using Large Eddy Simulation(LES) and (3) derive, use and study Time Domain Impedance Boundary Conditions (TDIBCs), i.e. boundary conditions modeling complex acoustic impedances.
Identifer | oai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:20204 |
Date | 30 March 2018 |
Creators | Douasbin, Quentin |
Contributors | Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France) |
Source Sets | Université de Toulouse |
Language | English |
Detected Language | English |
Type | PhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://oatao.univ-toulouse.fr/20204/ |
Page generated in 0.0018 seconds