• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 3
  • Tagged with
  • 26
  • 26
  • 13
  • 9
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of nonlinear heat release-acoustic interactions in gas turbine combustors

Bellows, Benjamin Davis 28 March 2006 (has links)
This thesis describes an experimental investigation of the flame transfer function between flow disturbances and heat release oscillations in lean, premixed combustors. This research effort was motivated by the fact that modern gas turbines, operating fuel-lean to minimize exhaust emissions, are susceptible to self-excited combustion oscillations. These instabilities generally occur when the unsteady combustion process couples with the acoustic modes of the combustion chamber. The resultant flow and structural vibrations can substantially reduce hot section part life. As such, avoiding operating regimes where high dynamics occur often requires operating at lower power outputs and/or higher pollutant emissions than the turbine is otherwise capable. This work demonstrated nonlinearities in the chemiluminescence response at large amplitude velocity oscillations in a turbulent, swirling flame. It is observed that the nonlinear flame response can exhibit a variety of behaviors, both in the shape of the response curve and the forcing amplitude at which nonlinearity is first observed depending on the operating conditions of the combustor. The phase between the flow oscillations and heat release is also seen to have substantial amplitude dependence. In addition, the interactions between the fundamental frequency and the higher and subharmonics of the measured signals can significantly influence the flame as well as the frequency response of the system. The nonlinear flame dynamics are governed by different mechanisms in different frequency and flowrate regimes. Three mechanisms, vortex rollup, unsteady flame liftoff, and parametric instability, are identified to influence the nonlinear flame response in these combustors. Analysis of the results shows that the mechanisms responsible for nonlinearity in the flame response are influenced by the Strouhal number, the mean velocity at the combustor dump plane, and the ratio of the oscillating velocity amplitude to the laminar flame speed.
2

Utilizing a cycle simulation to examine the use of exhaust gas recirculation (EGR) for a spark-ignition engine: including the second law of thermodynamics

Shyani, Rajeshkumar Ghanshyambhai 10 October 2008 (has links)
The exhaust gas recirculation (EGR) system has been widely used to reduce nitrogen oxide (NOx) emission, improve fuel economy and suppress knock by using the characteristics of charge dilution. However, previous studies have shown that as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and increasing hydrocarbon emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. A thermodynamic cycle simulation of the four-stroke spark-ignition engine was used to determine the effects of EGR on engine performance, emission characteristics and second law parameters, considering combustion instability issues as EGR level increases. A parameter, called 'Fuel Fraction Burned,' was introduced as a function of the EGR percentage and used in the simulation to incorporate the combustion instability effects. A comprehensive parametric investigation was conducted to examine the effects of variations in EGR, load and speed for a 5.7 liter spark-ignition automotive engine. Variations in the thermal efficiencies, brake specific NOx emissions, average combustion temperature, mean exhaust temperature, maximum temperature and relative heat transfer as functions of exhaust gas recycle were determined for both cooled and adiabatic EGR configurations. Also effects of variations in the load and speed on thermal efficiencies, relative heat transfers and destruction of availability due to combustion were determined for 0% EGR and 20% EGR cases with both cooled and adiabatic configurations. For both EGR configurations, thermal efficiencies first increase, reach a maximum at about 16% EGR and then decrease as the EGR level increases. Thermal efficiencies are slightly higher for cooled EGR configuration than that for adiabatic configuration. Concentration of nitric oxide emissions decreases from about 2950 ppm to 200 ppm as EGR level increases from 0% to 20% for cooled EGR configuration. The cooled EGR configuration results in lower nitric oxide emissions relative to the adiabatic EGR configuration. Also second law parameters show the expected trends as functions of EGR. Brake thermal efficiency is higher for the 20% EGR case than that for the no EGR case over the range of load (0 to WOT) and speed (600 rpm to 6000 rpm). Predictions made from the simulation were compared with some of the available experimental results. Predicted thermal efficiencies showed a similar trend when compared to the available experimental data. Also, percentage of unused fuel availability increases as the EGR level increases, and it can be seen as one of the effects of deteriorating combustion quality as the EGR level increases.
3

Impact of Flow Rotation on Flame Dynamics and Hydrodynamic Stability

Kaiser, Thomas 31 January 2019 (has links) (PDF)
This thesis investigates large scale flow rotation in two configurations. In the first, the effect of flow rotation on a laminar flame is investigated. The flame is anchored in the wake of a cylindrical bluff body. The flow rotation is introduced by turning the cylinder along its axis. It is shown by Direct Numerical Simulation (DNS), that the cylinder rotation breaks the symmetry of both flame branches. Flame Transfer Function (FTF) measurements performed by the Wiener-Hopf Inversion suggest, that low rotation rates lead to deep gaps in the gain and the flame becomes almost insensitive to acoustic perturbation at a specific frequency. It furthermore is demonstrated that this decrease in gain of the FTF is due to destructive interference of the heat release signals caused by the two flame branches. The frequency at which the gain becomes almost zero can be adjusted by tuning the cylinder rotation rate. The study suggests that controlling the symmetry of the flame could be a tool of open-loop control of thermoacoustic instabilities.
4

Simulation aux grandes échelles des instabilités de combustion transverses des flammes parfaitement prémélangées et swirlées diphasiques / LES of self-excited transverse combustion instabilities in perfectly-premixed and swirling spray flames

Ghani, Abdulla 17 September 2015 (has links)
Dans cette thèse, les instabilités de combustion sont étudiées sur deux types de configuration. Tout d’abord, un cas académique stabilisé par un dièdre (Volvo) est étudié. Les simulations sont validées par comparaison avec les données expérimentales. En faisant varier le point de fonctionnement, des modes transverses et longitudinaux sont observés, en bon accord avec les données expérimentales en termes de fréquence des fluctuations de pression et de la dynamique de l’écoulement. Dans un second temps, une configuration proche des cas industriels a été étudiée dans le cadre du projet européen KIAI (Lotar). Les données expérimentales ont été obtenues lors d’une campagne d’essais à l’ONERA. Plusieurs simulations aux grandes échelles sont conduites sur cette configuration. Les instabilités transverses de combustion sont analysées et les mécanismes essentiels qui les pilotent sont identifiés. Sur la base de ces observations, la forme du modèle à Fonction de Transfert de Flamme est modifiée et associée à un solveur de Helmholtz pour prédire la stabilité des modes transverses. Les résultats obtenus par le solveur acoustique sont en bon accord avec la carte de stabilité obtenue par la simulation aux grandes échelles. / In this work longitudinal and transverse combustion instabilities are studied in two types of configurations. While longitudinal modes have been observed in many previous studies at low frequencies, the present work also focusses on high-frequency transverse modes. First, a premixed flame stabilized on a V-fame holder is investigated where experimental results obtained by Volvo are used to validate the simulations. For different operating conditions, longitudinal and transverse modes are observed in Large Eddy Simulations (LES) and show good agreement with the experimental data in terms of pressure frequency and flow dynamics. In a second step, a semi-industrial case is examined within the European project KIAI. Experiments are conducted by ONERA and LES of this two-phase flow configuration (called Lotar) are carried out. Transverse combustion instabilities are analyzed and key elements which drive instabilities are identied. These observations are used to reformulate the classic Flame Transfer Function (FTF) in order to predict the stability of transverse modes by use of an Helmholtz solver. The results reproduce fairly well the stability map generated by LES.
5

Acoustic waves in combustion devices : interactions with flames and boundary conditions

Douasbin, Quentin 30 March 2018 (has links) (PDF)
Combustion devices are prone to combustion instabilities. They arise from a constructive coupling between the unsteady heat release rate of the flame and the resonant acoustic modes of the entire system. The occurence of such instabilities can pose a threat to both performance and integrity of combustion systems. Although these phenomena have been known for more than a century, avoiding their appearance in industrial engines is still challenging. The objective of this thesis is threefold: (1) study the dynamics of the resonant acoustic modes, (2) investigate the flame response of a liquid rocket engine under unstable conditions using Large Eddy Simulation(LES) and (3) derive, use and study Time Domain Impedance Boundary Conditions (TDIBCs), i.e. boundary conditions modeling complex acoustic impedances.
6

Validation of a Physics-Based Low-Order Thermo-Acoustic Model of a Liquid-Fueled Gas Turbine Combustor and its Application for Predicting Combustion Driven Oscillations

Knadler, Michael January 2017 (has links)
No description available.
7

Dynamique de la combustion dans un foyer annulaire multi-injecteurs diphasique / Combustion dynamics of an annular combustor with multiple spray injectors

Prieur, Kevin 14 December 2017 (has links)
Ces dernières décennies ont vu apparaître de nombreuses innovations dans le domaine de la combustion afin de réduire la consommation et les émissions polluantes. De nouveaux types d'injecteur, de type LPP - Lean Premixed Prevaporized, ont été mis au point permettant de diminuer le rapport combustible/air et visent à pré-vaporiser le carburant en amont de la combustion afin de mieux le mélanger à l'air issu du compresseur. Cette architecture permet une amélioration de la consommation et des émissions polluantes, mais rend les foyers annulaires plus sensibles à des phénomènes instationnaires qui perturbent le fonctionnement du système, accroissent les flux de chaleur vers les parois de la chambre, induisent des vibrations de structures, entrainent une fatigue cyclique des pièces mécaniques et dans des cas extrêmes conduisent à des dommages irréversibles. L'objectif est de poursuivre l'effort engagé au laboratoire EM2C sur ce thème et plus particulièrement sur celui de la dynamique de la combustion dans les chambres annulaires. La thèse concerne plus spécialement le cas où l'injection du combustible s'effectue sous forme liquide. La configuration reproduit sous forme idéalisée celle que l'on trouve en pratique dans les moteurs aéronautiques. La chambre, désignée sous le nom de MICCA-Spray, est équipée de 16 injecteurs swirlés pouvant être alimentés par un combustible liquide ou gazeux, permettant ainsi une combustion diphasique ou prémélangée. Le système possède des parois en quartz donnant un accès optique à la zone de flamme. Il est aussi équipé d'un ensemble de diagnostics tels des microphones, des photomultiplicateurs ainsi que des systèmes d'imagerie à haute cadence. / These last decades have seen many innovations in the field of combustion to reduce fuel consumption and pollutant emissions. New types of injector, for example LPP - Lean Premixed Prevaporized, have then been developed to reduce the fuel / air ratio and aim to pre-vaporize the fuel upstream of the combustion in order to mix it better with the air coming from the compressor. Unfortunately this architecture makes annular chambers more sensitive to unsteady phenomena which disturb the functioning of the system, increase the heat flows towards the walls of the chamber, induce vibrations of structures, cause cyclic fatigue of mechanical parts and in extreme cases lead to irreversible damage. The objective of this thesis is to continue the effort undertaken at the EM2C laboratory on this topic and more particularly on the dynamics of combustion in annular chambers comprising a set of injectors. The thesis concerns more particularly the case where the injection of the fuel takes place in liquid form. This configuration reproduces, in idealized form, what can be found in practice in aeronautical engines. It is also a configuration studied at the fundamental level. The chamber, known as MICCA-Spray, is equipped with 16 swirled injectors that can be powered by liquid or gaseous fuel, thus enabling two-phase or fully premixed combustion. The system has quartz walls giving optical access to the flame zone. It is also equipped with a set of diagnostics such as microphones, photomultipliers and high-speed imaging systems.
8

Impact of flow rotation on flame dynamics and hydrodynamic stability / Influence de la rotation de l'écoulement sur la dynamique des flammes et la stabilité hydrodynamique

Kaiser, Thomas 31 January 2019 (has links)
Cette thèse a pour but l’étude de la rotation de l’écoulement des grandes échelles dans deux configurations. La première configuration se concentre sur l’effet de la rotation de l’écoulement sur une flamme laminaire. Elle est stabilisée dans le sillage d’un cylindre. La rotation de l’écoulement est introduite en faisant tourner le cylindre autour de son axe. La simulation numérique directe (Direct Numerical Simulation (DNS)) montre que la rotation du cylindre rompt la symétrie des deux branches de la flamme. La fonction de transfert de flamme (Flame Transfer Function (FTF)), obtenue grâce à l’inversion de Wiener-Hopf, indique qu’un faible taux de rotation réduit le gain de la FTF et donc la flamme devient presque insensible aux perturbations acoustiques à une fréquence donnée. De plus, il est démontré que cette diminution du gain est due à une interférence destructive des fluctuations de chaleur produites par les deux branches de la flamme. La fréquence à laquelle le gain de la FTF devient presque nul est ajustable par la vitesse de rotation du cylindre. Cette étude suggère que le contrôle de la symétrie de la flamme pourrait être un outil de contrôle en boucle ouverte des instabilités thermoacoustiques. Dans le cas de la deuxième configuration, la rotation de l’écoulement est induite par une instabilité hydrodynamique, aussi nommée Precessing Vortex Core (PVC) dans un système d’injection de carburant industriel. Des expériences et des simulations aux grandes échelles (Large Eddy Simulation (LES)) montrent que l’écoulement non-réactif dans l’injecteur pri- maire peut être décomposé en une contribution moyenne et un PVC. Cette instabilité hydro- dynamique est étudiée par l’analyse de stabilité linéaire (Linear Stability Analysis (LSA)) en utilisant deux approches différentes (locale et BiGlobale). Les résultats de l’expérience, de la LES et de la LSA démontrent que le montage d’une tige centrale à l’intérieur de l’injecteur stabilise le PVC. De plus, le même injecteur industriel est étudié dans le cas d’un écoule- ment réactif par LES. Les résultats démontrent que la flamme stabilise le PVC. L’analyse de stabilité BiGlobal montre que le gradient de densité dans le front moyen de la flamme a un effet important sur l’amortissement du PVC. Enfin, l’impact de la tige centrale est également étudié pour le cas réactif. La tige centrale impacte marginalement la forme globale de la flamme, mais a un effet positif sur l’accrochage de la flamme dans la zone de combustion pauvre. En comparant deux cas par LSA, celui avec la tige et celui sans la tige, les résultats suggèrent que la tige augmente considérablement l’amortissement du PVC. Cela pourrait causer une diminution de la turbulence dans l’écoulement et empêcher l’extinction de la flamme et donc expliquer l’influence bénéfique de la tige sur la stabilisation de la flamme. / This thesis investigates large scale flow rotation in two configurations. In the first, the effect of flow rotation on a laminar flame is investigated. The flame is anchored in the wake of a cylindrical bluff body. The flow rotation is introduced by turning the cylinder along its axis. It is shown by Direct Numerical Simulation (DNS), that the cylinder rotation breaks the symmetry of both flame branches. Flame Transfer Function (FTF) measurements performed by the Wiener-Hopf Inversion suggest, that low rotation rates lead to deep gaps in the gain and the flame becomes almost insensitive to acoustic perturbation at a specific frequency. It furthermore is demonstrated that this decrease in gain of the FTF is due to destructive interference of the heat release signals caused by the two flame branches. The frequency at which the gain becomes almost zero can be adjusted by tuning the cylinder rotation rate. The study suggests that controlling the symmetry of the flame could be a tool of open-loop control of thermoacoustic instabilities.
9

Adaptive control of combution instabilities using real-time modes observation

Johnson, Clifford Edgar 07 April 2006 (has links)
Combustion instabilities are a significant problem in combustion systems, particularly in Low NOx Gas Turbine combustors. These instabilities result in large-scale pressure oscillations in the combustor, leading to degraded combustor performance, shortened lifetime, and catastrophic combustor failure. The objective of this research was to develop a practical adaptive active control system that, coupled with an appropriate actuator, is capable of controlling the combustor pressure oscillations without a priori knowledge of the combustor design, operating conditions or instability characteristics. The adaptive controller utilizes an observer that determines the frequencies, phases and amplitudes of the dominant modes of the oscillations in real time. The research included development and testing of the adaptive controller on several combustors and on an unstable acoustic feedback system in order to analyze its performance. The research also included investigations of combustor controllability and combustor stability margin, which are critical issues for practical implementation of an active control system on an industrial combustor. The results of this research are directly applicable to a variety of combustors and can be implemented on full-scale industrial combustion systems.
10

Response of a swirl-stabilized flame to transverse acoustic excitation

O'Connor, Jacqueline 23 December 2011 (has links)
This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. A description of the velocity-coupled transverse instability mechanism is explained with companion measurements describing each of the velocity disturbance pathways. Dependence on acoustic frequency, amplitude, and field symmetry is discussed. Significant emphasis is placed on the response of a swirling flow field to a transverse acoustic field. Details of the dynamics of the vortex breakdown bubble and the shear layers are explained using a wide variety of measurements for both non-reacting and reacting flow cases. This thesis concludes with an overview of the impact of this work and suggestions for future research in this area.

Page generated in 0.1519 seconds