Return to search

Développement d'un outil d'assistance pour le prédimensionnement d'une vis à rouleaux satellites soumise à des sollicitations complexes / Development of a support tool for the preliminary design of a planetary roller screw under complex loadings

L'utilisation des vis à rouleaux satellites au cœur d'actionneurs électromécaniques destinées aux commandes de vol nécessite une connaissance la plus précise possible de leur durée de vie suivant le profil de mission. Le calcul de durée de vie d’une vis à rouleaux dans les conditions aéronautiques nécessite des investigations à la fois en résistance (mécanique des contacts) et en fatigue. En résistance, il faut être en mesure de déterminer la répartition de charge dans le système, calculer les pressions de contact et les contraintes en sous-couche pour une charge donnée. En fatigue de contact, il faut, pour un spectre de charges, construire le trajet de chargement tout en prenant en compte le caractère multiaxial des états de contraintes. Moyennant des hypothèses simplificatrices pertinentes, l’étude en résistance de la vis peut être ramenée à celui d’un assemblage mécanique en mouvement stationnaire et à un secteur représentatif. Une analyse tridimensionnelle par éléments finis (EF 3D) nous a permis de cerner le comportement de la vis à rouleaux en statique. Les résultats issus de cette analyse sont ensuite confrontés à des tests de rigidité et ont montré la solidité de notre étude. Enfin, en se servant de ce modèle numérique comme référence, nous avons alors développé un outil de prédimensionnement basé sur le couplage de trois modules qui représentent des modèles semi-analytiques, robustes et ultra-rapides, pour réaliser des calculs en résistance et en fatigue. Le premier modèle est construit sur la base de modèles d’éléments finis filaires (EF 1D). Il sert à déterminer la répartition de charge (statique) dans le système pour n’importe quelle configuration géométrique ou de fonctionnement et pour toute charge axiale. Il permet ainsi de suivre la vis dans son déplacement axial et d’identifier les filets critiques pour chacun des composants de la structure. Le second modèle calcule les pressions de contact et les états de contraintes multiaxiaux, grâce aux méthodes combinées du gradient conjugué (CGM) et de la transformée rapide de Fourier (FFT). Le troisième module procède à une analyse en fatigue suivant trois critères : Crossland, Dang Van et Papadopoulos / The use of satellite roller screws in the core of electromechanical actuators for flight control requires knowledge as accurate as possible in their lifetime according to the mission profile. The calculation of life of a roller screw in aeronautical conditions requires investigations in both resistance (mechanical contacts) and fatigue. In resistance, we must be able to calculate to determine the load distribution in the system, calculate the contact pressures and the in-depth stresses for a given load. In contact fatigue, it is necessary to build for any spectrum loading the loading path taking into account the aspect of the multiaxial stresses. Owing to relevant assumptions, the study in resistance of the screw can be reduced to that of a sectorial mechanical assembly with stationary moving. A three-dimensional analysis based on the three-dimensional Finite Element (FEM 3D) allowed us to identify the behavior of the roller screw in static. The results of this analysis are then compared to stiffness tests and show the pertinence of our study as they were in good agreement. Finally, using this numerical model as a reference, we then developed a preliminary design tool based on the coupling of three modules that represent semi-analytical models, robust and ultra-fast, to perform the calculations in resistance and fatigue. The first model is based on finite element models wired (EF 1D) determines the distribution of load (static) in the system for any geometric configuration and operation and for any axial load. It thus makes it possible to follow the screw in its axial movement and to identify the critical nets for each component of the structure. The second model calculates the contact pressures and multiaxial stresses states, thanks to the combined conjugated gradient method (CGM) and the Fast Fourier Transform (FFT). The third module performs a fatigue analysis according to three criteria: Crossland, Dang Van and Papadopoulos

Identiferoai:union.ndltd.org:theses.fr/2013ISAT0038
Date10 July 2013
CreatorsAbevi, Folly kossi
ContributorsToulouse, INSA, Daidié, Alain, Chaussumier, Michel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds