Return to search

Static and dynamic job-shop scheduling using rolling-horizon approaches and the Shifting Bottleneck Procedure

Over the last decade, the semiconductor industry has witnessed a steady increase in its complexity based on improvements in manufacturing processes and equipment. Progress in the technology used is no longer the key to success, however. In fact, the semiconductor technology has reached such a high level of complexity that improvements appear at a slow pace. Moreover, the diffusion of technology among competitors shows that traditional approaches based on technological advances and innovations are not sufficient to remain competitive.

A recent crisis in the semiconductor field in the summer 2001 made it even clearer that optimizing the operational control of semiconductor wafer fabrication facilities is a vital key to success. Operating research-oriented studies have been carried out to this end for the last 5 years. None of them, however, suggest a comprehensive model and solution to the operational control problem of a semiconductor manufacturing facility.

Two main approaches, namely mathematical programming and dispatching rules, have been explored in the literature so far, either partially or entirely dealing with this problem. Adapting the Shifting Bottleneck (SB) procedure is a third approach that has motivated many studies.

Most research focuses on optimizing a certain objective function under idealized conditions and thus does not take into consideration system disruptions such as machine breakdown. While many papers address the adaptations of the SB procedure, the problem of re-scheduling jobs dynamically to take disruptions and local disturbances (machines breakdown, maintenance...) into consideration shows interesting perspectives for research. Dealing with local disturbances in a production environment and analyzing their impact on scheduling policies is a complex issue. It becomes even more complex in the semiconductor industry because of the numerous inherent constraints to take into account. The problem that is addressed in this thesis consists of studying dynamic scheduling in a job-shop environment where local disturbances occur. This research focuses on scheduling a large job shop and developing re-scheduling policies when local disturbances occur. The re-scheduling can be applied to the whole production horizon considered in the instance, or applied to a restricted period T that becomes a decision variable of the problem. The length of the restricted horizon T of re-scheduling can influence significantly the overall results. Its impact on the general performance is studied. Future extensions can be made to include constraints that arise in the semiconductors industry, such as the presence of parallel and batching machines, reentrant flows and the lot dedication problem.

The theoretical results developed through this research will be applied to data sets to study their efficiency. We hope this methodology will bring useful insights to dealing effectively with local disturbances in production environments. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31485
Date10 July 2003
CreatorsGhoniem, Ahmed
ContributorsIndustrial and Systems Engineering, Sarin, Subhash C., Sherali, Hanif D., Dauzere-Peres, Stephane
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationMS-thesis.pdf

Page generated in 0.0021 seconds