Aerosol particle deposition rates on surfaces inside a clean room are predicted by a model developed to account for particle convection, diffusion and sedimentation. External forces acting on the particle also influence the rate of deposition. Both electrical charge build up on product surfaces and temperature gradients in the air near the product surface are known to effect the rate of deposition. A description of an electrostatic and thermophoretic force on the particle is thus included in the model. The equations governing the particle deposition process and the approach used in obtaining a solution to these equations are both described. A finite element numerical solution is detailed, followed by a description of the electrostatic force models. Finally, predictions of the model are presented with a comparison to data experimentally obtained by other researchers.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277120 |
Date | January 1989 |
Creators | Sannes, Kevin Markle, 1964- |
Contributors | Peterson, Thomas W. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0031 seconds