Return to search

Routage adaptatif et stabilité dans les réseaux maillés sans fil

Grâce à leur flexibilité et à leur facilité d’installation, les réseaux maillés sans fil (WMNs) permettent un déploiement d’une infrastructure à faible coût. Ces réseaux étendent la couverture des réseaux filaires permettant, ainsi, une connexion n’importe quand et n’importe où. Toutefois, leur performance est dégradée par les interférences et la congestion. Ces derniers causent des pertes de paquets et une augmentation du délai de transmission d’une façon drastique. Dans cette thèse, nous nous intéressons au routage adaptatif et à la stabilité dans ce type de réseaux.
Dans une première partie de la thèse, nous nous intéressons à la conception d’une métrique de routage et à la sélection des passerelles permettant d’améliorer la performance des WMNs. Dans ce contexte nous proposons un protocole de routage à la source basé sur une nouvelle métrique. Cette métrique permet non seulement de capturer certaines caractéristiques des liens tels que les interférences inter-flux et intra-flux, le taux de perte des paquets mais également la surcharge des passerelles. Les résultats numériques montrent que la performance de cette métrique est meilleure que celle des solutions proposées dans la littérature.
Dans une deuxième partie de la thèse, nous nous intéressons à certaines zones critiques dans les WMNs. Ces zones se trouvent autour des passerelles qui connaissent une concentration plus élevé du trafic ; elles risquent de provoquer des interférences et des congestions. À cet égard, nous proposons un protocole de routage proactif et adaptatif basé sur l’apprentissage par renforcement et qui pénalise les liens de mauvaise qualité lorsqu’on s’approche des passerelles. Un chemin dont la qualité des liens autour d’une passerelle est meilleure sera plus favorisé que les autres chemins de moindre qualité. Nous utilisons l’algorithme de Q-learning pour mettre à jour dynamiquement les coûts des chemins, sélectionner les prochains nœuds pour faire suivre les paquets vers les passerelles choisies et explorer d’autres nœuds voisins. Les résultats numériques montrent que notre protocole distribué, présente de meilleurs résultats comparativement aux protocoles présentés dans la littérature.
Dans une troisième partie de cette thèse, nous nous intéressons aux problèmes d’instabilité des réseaux maillés sans fil. En effet, l’instabilité se produit à cause des changements fréquents des routes qui sont causés par les variations instantanées des qualités des liens dues à la présence des interférences et de la congestion. Ainsi, après une analyse de l’instabilité, nous proposons d’utiliser le nombre de variations des chemins dans une table de routage comme indicateur de perturbation des réseaux et nous utilisons la fonction d’entropie, connue dans les mesures de l’incertitude et du désordre des systèmes, pour sélectionner les routes stables. Les résultats numériques montrent de meilleures performances de notre protocole en comparaison avec d’autres protocoles dans la littérature en termes de débit, délai, taux de perte des paquets et l’indice de Gini. / Thanks to their flexibility and their simplicity of installation, Wireless Mesh Networks (WMNs) allow a low cost deployment of network infrastructure. They can be used to extend wired networks coverage allowing connectivity anytime and anywhere. However, WMNs may suffer from drastic performance degradation (e.g., increased packet loss ratio and delay) because of interferences and congestion. In this thesis, we are interested in adaptive routing and stability in WMNs.
In the first part of the thesis, we focus on defining new routing metric and gateway selection scheme to improve WMNs performance. In this context, we propose a source routing protocol based on a new metric which takes into account packet losses, intra-flow interferences, inter-flow interferences and load at gateways together to select best paths to best gateways. Simulation results show that the proposed metric improves the network performance and outperforms existing metrics in the literature.
In the second part of the thesis, we focus on critical zones, in WMNs, that consist of mesh routers which are located in neighborhoods of gateways where traffic concentration may occur. This traffic concentration may increase congestion and interferences excessively on wireless channels around the gateways. Thus, we propose a proactive and adaptive routing protocol based on reinforcement learning which increasingly penalizes links with bad quality as we get closer to gateways. We use Q-learning algorithm to dynamically update path costs and to select the next hop each time a packet is forwarded toward a given gateway; learning agents in each mesh router learn the best link to forward an incoming packet and explore new alternatives in the future. Simulation results show that our distributed routing protocol is less sensitive to interferences and outperforms existing protocols in the literature.
In the third part of this thesis, we focus on the problems of instability in WMNs. Instability occurs when routes flapping are frequent. Routes flapping are caused by the variations of link quality due to interferences and congestion. Thus, after analyzing factors that may cause network instability, we propose to use the number of path variations in routing tables as an indicator of network instability. Also, we use entropy function, usually used to measure uncertainty and disorder in systems, to define node stability, and thus, select the most stable routes in the WMNs. Simulation results show that our stability-based routing protocol outperforms existing routing protocols in the literature in terms of throughput, delay, loss rate, and Gini index.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/10833
Date03 1900
CreatorsBoushaba, Mustapha
ContributorsHafid, Abdelhakim, Gendreau, Michel
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0026 seconds