Return to search

L’influence de l’utilisation du territoire et des structures géomorphologiques sur la rétention d’azote, de phosphore et de carbone des ruisseaux

Les ruisseaux sont d’importants sites de transformations chimiques dû au taux de contact élevé entre l’eau du chenal et leurs sédiments biogéochimiquement réactifs. L’urbanisation entraîne généralement une charge en nutriments et en carbone plus élevée vers les ruisseaux à partir du bassin versant et la modification des formes du chenal se traduisant par une augmentation du débit et réduisant ainsi les transformations biogéochimiques intra-sédiments et contribuant à l’augmentation des exports vers l’aval. Toutefois, il y a peu d’information disponible sur l’influence d’une pression d’urbanisation modérée sur le traitement de l’azote, du phosphore et du carbone dans les ruisseaux ainsi que sur l’importance relative des changements des caractéristiques du bassin versant et du chenal sur le flux de ces éléments. Dans cette étude, nous avons effectué des bilans de masse sur différentes espèces de carbone (C), d’azote (N) et de phosphore (P) dans plusieurs tronçons de ruisseaux ayant différentes utilisations du territoire et caractéristiques géomorphologiques (composition en mouilles, seuils ou courses) afin d’élucider comment ces traits influencent les flux d’éléments au sein d’un ruisseau vierge et d’un ruisseau modérément urbanisé. L’azote s’est avéré être l’élément le plus sensible, avec des concentrations de nitrates 3.5 fois plus élevées dans le ruisseau péri-urbain. Les concentrations de carbone organique dissous étaient légèrement plus élevées dans les sites péri-urbains alors que les niveaux de P total ne différaient pas significativement entre les deux ruisseaux. En termes de flux, les nitrates étaient la forme chimique la plus réactive résultant en une rétention nette dans la majorité des tronçons en contexte vierge alors qu’un export net fût observé dans tous les tronçons en contexte péri-urbain. Nous avons observé une baisse en concentrations de nitrates avec une
augmentation d’excès de deutérium de l’eau du chenal, indiquant ainsi une capacité de rétention de l’eau notable au sein du bassin versant favorisant l’élimination d’azote. Au sein des ruisseaux, la présence de mouilles et d’une pente de chenal peu prononcée, traits contribuant aussi à l’augmentation du temps de résidence, ont également favorisés la perte d’azote. Globalement, les nitrates furent les formes chimiques les plus réactives à de faibles pressions d’urbanisation, ce qui suggère que les efforts de restauration visant à augmenter le temps de résidence de l’eau afin de favoriser les pertes par la dénitrification devraient être implémentés autant au sein du bassin versant qu’au sein du chenal des ruisseaux. / Streams are important sites of elemental transformations due to the relatively high contact rates between flowing water and biogeochemically reactive sediments. Increased urbanization typically results in higher nutrient and carbon (C) inputs to streams from their watersheds and increased flow rates due to modification in channel form, reducing within stream net retention and increasing downstream exports. However, less is known on how moderate urbanization might influence the joint processing of C, nitrogen (N), and phosphorus (P) in streams or the relative influence of changes in watershed and stream features on their fluxes. In this study, we performed mass-balances of different C, N, and P species in multiple reaches with contrasting land use land cover and geomorphic features (pools, riffles, runs) to determine the effects of geomorphology versus human
influence on elemental fluxes in a pristine and a semi-urban stream. N was the most responsive of all elements, where nitrate concentrations were 3.5-fold higher in the peri-urban stream. Dissolved organic carbon was only slightly higher in the peri-urban site whereas total P not significantly different between streams. In terms of fluxes, nitrate behaved differently between the streams with net retention occurring in the majority of the reaches of the pristine site, whereas net export was observed in all of the reaches of the semi-urban one. We found a decrease in nitrate concentrations with an increase in excess deuterium of the water (d-excess), an indicator of how overall water retention capacity of the watershed favored N loss. Within the stream, the presence of pools, and reduced channel slope, which also increase water retention time, again favored N loss. Overall, nitrate was the most sensitive nutrient to slight urbanization, where higher export to stream was influenced by land use, but where geomorphic features were more important in driving retention capacity.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/24416
Date08 1900
CreatorsCharrier Tremblay, Charles
ContributorsMaranger, Roxane, Lapierre, Jean-François
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse

Page generated in 0.0028 seconds