L'homme est capable d'utiliser des stratégies ou règles concurrentes selon les contraintes environnementales. Nous étudions un modèle plausible pour une tâche nécessitant l'apprentissage de plusieurs règles associant des stimuli visuels à des réponses motrices. Deux réseaux de populations neurales à sélectivité mixte interagissent. Le réseau décisionnel apprend les associations stimulus-réponse une à une, mais ne peut gérer qu'une règle à la fois. Son activité modifie la plasticité synaptique du second réseau qui apprend les statistiques d'évènements sur une échelle de temps plus longue. Lorsque des motifs entre les associations stimulus-réponse sont détectés, un biais d'inférence vers le réseau décisionnel guide le comportement futur. Nous montrons que le mécanisme de Hebb non-supervisé dans le second réseau est suffisant pour l'implémentation des règles. Leur récupération dans le réseau de décision améliore la performance. Le modèle prédit des changements comportementaux en fonction de la séquence des réponses précédentes, dont les effets sur la performance peuvent être positifs ou négatifs. Les prédictions sont confirmées par les données, et permettent d'identifier les sujets ayant appris la structure de la tâche. Le signal d'inférence corrèle avec l'activité BOLD dans le réseau fronto-pariétal. Au sein de ce réseau, les n¿uds préfrontaux dorsomédial et dorsolatéral sont préférentiellement recrutés lorsque les règles sont récurrentes: l'activité dans ces régions pourrait biaiser les circuits de décision lorsqu'une règle est récupérée. Ces résultats montrent que le mécanisme de Hebb peut expliquer l'apprentissage de comportements complexes en contrôle cognitif. / Depending on environmental demands, humans performing in a given task are able to exploit multiple concurrent strategies, for which the mental representations are called task-sets. We examine a candidate model for a specific human experiment, where several stimulus-response mappings, or task-sets, need to be learned and monitored. The model is composed of two interacting networks of mixed-selective neural populations. The decision network learns stimulus-response associations, but cannot learn more than one task-set. Its activity drives synaptic plasticity in a second network that learns event statistics on a longer timescale. When patterns in stimulus-response associations are detected, an inference bias to the decision network guides successive behavior. We show that a simple unsupervised Hebbian mechanism in the second network is sufficient to learn an implementation of task-sets. Their retrieval in the decision network improves performance. The model predicts abrupt changes in behavior depending on the precise statistics of previous responses, corresponding to positive (task-set retrieval) or negative effects on performance. The predictions are borne out by the data, and enable to identify subjects who have learned the task structure. The inference signal correlates with BOLD activity in the fronto-parietal network. Within this network, dorsomedial and dorsolateral prefrontal nodes are preferentially recruited when task-sets are recurrent: activity in these regions may provide a bias to decision circuits when a task-set is retrieved. These results show that Hebbian mechanisms and temporal contiguity may parsimoniously explain the learning of rule-guided behavior.
Identifer | oai:union.ndltd.org:theses.fr/2016PA066379 |
Date | 07 November 2016 |
Creators | Bouchacourt, Flora |
Contributors | Paris 6, Ostojic, Srdjan |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds