There is a growing demand for miniature, high-precision components and devices with micro-scale features for applications in biomedical systems, aerospace structures, and energy storage/conversion systems. Mechanical micromachining has become a leading approach to address this demand. In micromachining, a micro-scale cutting tool, such as a micro-endmill with a diameter as small as 10 um, is rotated by an ultra-high-speed (UHS) spindle (speeds greater than 60,000 rpm, reaching up to 500,000 rpm) to mechanically remove the material from a workpiece. Although micromachining resembles the traditional computer numerically controlled (CNC) machining processes, the micron-scale cutting tools, ultra-high-speed (UHS) spindles, and considerably tighter tolerance requirements bring unique challenges to micromachining.
Identifer | oai:union.ndltd.org:cmu.edu/oai:repository.cmu.edu:dissertations-2218 |
Date | 01 May 2018 |
Creators | Nahata, Sudhanshu |
Publisher | Research Showcase @ CMU |
Source Sets | Carnegie Mellon University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.0036 seconds