• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Tool Wear and Tool Fracture in Micromilling

Shiosaki, Dominic 2011 December 1900 (has links)
Micromachining is the next generation of precision material removal at the micro scale level due to the increase in miniaturization of commercial products. The applications of this technology extend anywhere from electronics to micro scale medical implants. Micromilling has the potential to be the most cost effective and efficient material removal process due to ease of use and accessibility of the tools. This research analyzes vibration of a high speed spindle and then studies micromilling of aluminum and titanium. Finite element analysis and tool modeling compliment experimental data. Cumulative tool wear based on Taylor model shows decreasing tool life with increasing feed rate and increasing cutting speed on aluminum. Inconsistent results are seen when micromilling titanium due to premature chipping of tool noses. A significant nose wear plastically deforms a micromilled subsurface and is verified with microstructure study and microhardness measurements.
2

Surface Finish Modeling in Micromilling of Biocompatible Materials

Berestovskyi, Dmytro V 16 December 2013 (has links)
Over the last few decades, miniaturization of the product became a necessity for many industries to achieve successful technological development, satisfy customer needs, and stay economically competitive in the market. Thus, many medical, aerospace, and electronic devices tend to decrease in size. Along with the strong demand for miniaturization, new cutting-edge micromanufacturing techniques are developing in order to produce microcomponents with a smooth surface finish and high dimensional accuracy. In the medical industry, some devices require manufacturing of fluidic microchannels on biocompatible materials for transportation of exact amount of medicine to a defined location. Often such microchannels must be manufactured to achieve a high aspect ratio, a submicron surface finish, and an anisotropic controlled profile. The fabrication of such channels on biocompatible materials still poses a challenge. This study developed micromanufacturing technique to produce the microchannels and satisfy all the requirements listed above. Computer controlled micromilling on a high speed machine system in minimum quantity lubrication was used to remove most materials and define a channel pattern. Microchannels were machined with ball end mills of diameters from Ø152μm to Ø198μm on NiTi alloy, 304 and 316L stainless steels. Assessment of microchannel was performed with optical microscopy, scanning electron microscopy, and white light interferometry. The theoretical surface roughness in ball end milling was derived using geometrical approach. The theoretical surface finish model was compared and validated with the experimental surface finish data. Meso- and macro-scale milling confirmed the validity of the model, but surface finish in micro-scale milling was measured to be a few orders of magnitude higher due to size effect and build-up edge. The build-up-edge was reduced when using AlTiN coated tools and milling in minimum quantity lubrication. The empirical surface roughness model obtained in this study shows the dependence of surface finish on chip load in micromilling. In order to further enhance the surface finish of milled microchannels additional finishing technique was identified. A separate study developed an effective electrochemical polishing technique to remove burrs and enhance surface finish of milled microchannels. When applying to 304, 316L stainless steel alloys and NiTi alloy, this hybrid technique can repeatedly produce microchannels with an average surface finish less than 100nm.
3

A study on productivity enhancement in high-speed, high-precision micromilling processes

Sodemann, Angela Ann 16 November 2009 (has links)
This thesis presents a study into the enhancement of productivity in micromilling processes by considering a fundamental treatment of tool path trajectory generation techniques and process optimization strategies that account for the impact of scale effects present in high-speed, high-precision micromachining operations. Micromilling is increasingly applied to the production of a wide variety of micro components, due to its high precision and flexibility. However, the productivity of micromilling is limited by the low feedrates necessitated by the inherent high precision and small feature size. In this study, several scale effects present at the microscale are identified, in particular the increase of the ratio of tool size to feature size, and the corresponding impact on trajectory generation and process optimization is investigated. The scale effects are shown to cause increased geometric error when the standard method of VF-NURBS is applied to microscale feedrate optimization. The method of Enhanced Variable-Feedrate NURBS (EVF-NURBS) is proposed and shown to successfully compensate for the scale effects leading to reduced geometric error. A key contribution of this study is the construction and experimental validation of the Variable-Feedrate Intelligent Segmentation (VFIS) method for increased feedrates and improved stability. The VFIS method provides a cutting time reduction of more than 50% in some cases, while effectively constraining geometric error. Two tool size optimization schemes are presented for maximizing productivity and minimizing geometric error while accounting for dynamic effects uniquely present at the microscale. Finally, the development of a low-cost, high-precision micro-mesoscale machining center (mMC) is presented.
4

Estudo teórico-experimental do efeito da flexão da ferramenta no processo de microfresamento / Theorical and experimental study on tool deflection effect in micromilling process

Arai, Ricardo 15 September 2008 (has links)
A flexão da ferramenta, em operações de fresamento de topo, é responsável por interferir negativamente na qualidade superficial da peça a ser usinada e, muitas vezes, pela quebra prematura da mesma. O presente trabalho tem como objetivo estudar experimentalmente os efeitos da flexão de fresas de topo com 0,8 mm de diâmetro no processo de microfresamento. Os ensaios experimentais foram realizados com o intuito de identificar quais parâmetros de corte apresentam maior influência na flexão da ferramenta. Os parâmetros de corte escolhidos para estudo foram: velocidade de corte, velocidade de avanço, profundidade de usinagem e penetração de trabalho. Os ensaios investigam, além das faixas de parâmetros recomendados pelo fabricante da ferramenta, uma condição 25% acima e outra 25% abaixo para todos os parâmetros estudados. O monitoramento de forças de corte foi realizado em todos os ensaios. As forças obtidas se mostraram diretamente relacionadas com a área de secção de corte, conforme teoria básica. Para fins comparativos, a força máxima obtida experimentalmente foi aplicada na simulação com elementos finitos (FEM - Finite Element Method) da ferramenta e indicou um comportamento similar ao de uma viga engastada. A análise microscópica do aspecto superficial da usinagem mostrou que menores avanços por dente resultam em um melhor acabamento confirmando resultados do processo convencional. O conhecimento do efeito dos parâmetros de corte no processo de microfresamento tem o intuito de oferecer informações às empresas do setor no sentido de melhorar o planejamento e processo de fabricação. / The tool deflection, in end milling operations, is responsible to intervene negatively on the workpiece surface quality and can also cause a premature tool failure (breakage).The present work aims at studying experimentally the effects of tool deflection when end milling with 0,8 mm diameter in microoperations. The experimental tests had intended to identify which parameters of milling show more influence in tool deflection. The chosen milling parameters for the study were: cutting speed, feed rate, depth of cut and step over. The tests aim to investigate, beside the recommended parameters from tool manufacturer, a 25% higher and 25% lower conditions. The force acquisition was made in all tests. The measured forces shown that they are directly related to the uncut chip cross section, in accordance with theory. For comparative purpose, the maximum experimental force value was applied in the finite elements method (FEM) simulation of the tool and indicates a similar behavior of an encastré beam. The microscopic analysis of the superficial aspect of the milling showed that smaller feed per tooth results in better finishing, as observed in the conventional process. The knowledge of the effect of the cutting parameters in the micromilling process has the intention of offering information for industries to improve the planning and process of manufacturing.
5

Investigation of Chip Production Rate as an Indicator of Micromilling Tool Wear

January 2015 (has links)
abstract: The demand for miniaturized components with feature sizes as small as tens of microns and tolerances as small as 0.1 microns is on the rise in the fields of aerospace, electronics, optics and biomedical engineering. Micromilling has proven to be a process capable of generating the required accuracy for these features and is an alternative to various non-mechanical micro-manufacturing processes which are limited in terms of cost and productivity, especially at the micro-meso scale. The micromilling process is on the surface, a miniaturized version of conventional milling, hence inheriting its benefits. However, the reduction in scale by a few magnitudes makes the process peculiar and unique; and the macro-scale theories have failed to successfully explain the micromilling process and its machining parameters. One such characteristic is the unpredictable nature of tool wear and breakage. There is a large cost benefit that can be realized by improving tool life. Workpiece rejection can also be reduced by successfully monitoring the condition of the tool to avoid issues. Many researchers have developed Tool Condition Monitoring and Tool Wear Modeling systems to address the issue of tool wear, and to obtain new knowledge. In this research, a tool wear modeling effort is undertaken with a new approach. A new tool wear signature is used for real-time data collection and modeling of tool wear. A theoretical correlation between the number of metal chips produced during machining and the condition of the tool is introduced. Experimentally, it is found that the number of chips produced drops with respect to the feedrate of the cutting process i.e. when the uncut chip thickness is below the theoretical minimum chip thickness. / Dissertation/Thesis / Masters Thesis Engineering 2015
6

An Investigation of Kinematic Redundancy for Reduced Error in Micromilling

January 2014 (has links)
abstract: Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due to the scale effects. These scale effects occur due to unequal scaling of the parameters from the macroscale to the microscale milling. One key example of scale effects in micromilling process is a geometrical source of error known as chord error. The chord error limits the feedrate to a reduced value to produce the features within machining tolerances. In this research, it is hypothesized that the increase of chord error in micromilling can be alleviated by intelligent modification of the kinematic arrangement of the micromilling machine. Currently, all 3-axis micromilling machines are constructed with a Cartesian kinematic arrangement with three perpendicular linear axes. In this research, the cylindrical kinematic arrangement is introduced, and an analytical expression for the chord error for this arrangement is derived. The numerical simulations are performed to evaluate the chord errors for the cylindrical kinematic arrangement. It is found that cylindrical kinematic arrangement gives reduced chord error for some types of the desired toolpaths. Then, the kinematic redundancy is introduced to design a novel kinematic arrangement. Several desired toolpaths have been numerically simulated to evaluate the chord error for kinematically redundant arrangement. It is concluded that this arrangement gives up to 5 times reduced error for all the desired toolpaths considered, and allows significant gains in allowable feedrates. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2014
7

Estudo teórico-experimental do efeito da flexão da ferramenta no processo de microfresamento / Theorical and experimental study on tool deflection effect in micromilling process

Ricardo Arai 15 September 2008 (has links)
A flexão da ferramenta, em operações de fresamento de topo, é responsável por interferir negativamente na qualidade superficial da peça a ser usinada e, muitas vezes, pela quebra prematura da mesma. O presente trabalho tem como objetivo estudar experimentalmente os efeitos da flexão de fresas de topo com 0,8 mm de diâmetro no processo de microfresamento. Os ensaios experimentais foram realizados com o intuito de identificar quais parâmetros de corte apresentam maior influência na flexão da ferramenta. Os parâmetros de corte escolhidos para estudo foram: velocidade de corte, velocidade de avanço, profundidade de usinagem e penetração de trabalho. Os ensaios investigam, além das faixas de parâmetros recomendados pelo fabricante da ferramenta, uma condição 25% acima e outra 25% abaixo para todos os parâmetros estudados. O monitoramento de forças de corte foi realizado em todos os ensaios. As forças obtidas se mostraram diretamente relacionadas com a área de secção de corte, conforme teoria básica. Para fins comparativos, a força máxima obtida experimentalmente foi aplicada na simulação com elementos finitos (FEM - Finite Element Method) da ferramenta e indicou um comportamento similar ao de uma viga engastada. A análise microscópica do aspecto superficial da usinagem mostrou que menores avanços por dente resultam em um melhor acabamento confirmando resultados do processo convencional. O conhecimento do efeito dos parâmetros de corte no processo de microfresamento tem o intuito de oferecer informações às empresas do setor no sentido de melhorar o planejamento e processo de fabricação. / The tool deflection, in end milling operations, is responsible to intervene negatively on the workpiece surface quality and can also cause a premature tool failure (breakage).The present work aims at studying experimentally the effects of tool deflection when end milling with 0,8 mm diameter in microoperations. The experimental tests had intended to identify which parameters of milling show more influence in tool deflection. The chosen milling parameters for the study were: cutting speed, feed rate, depth of cut and step over. The tests aim to investigate, beside the recommended parameters from tool manufacturer, a 25% higher and 25% lower conditions. The force acquisition was made in all tests. The measured forces shown that they are directly related to the uncut chip cross section, in accordance with theory. For comparative purpose, the maximum experimental force value was applied in the finite elements method (FEM) simulation of the tool and indicates a similar behavior of an encastré beam. The microscopic analysis of the superficial aspect of the milling showed that smaller feed per tooth results in better finishing, as observed in the conventional process. The knowledge of the effect of the cutting parameters in the micromilling process has the intention of offering information for industries to improve the planning and process of manufacturing.
8

Micromachining Metrology: Measurement and Analysis of Dynamic Tool-tip Trajectory when using Ultra-High-Speed Spindles

Nahata, Sudhanshu 01 May 2018 (has links)
There is a growing demand for miniature, high-precision components and devices with micro-scale features for applications in biomedical systems, aerospace structures, and energy storage/conversion systems. Mechanical micromachining has become a leading approach to address this demand. In micromachining, a micro-scale cutting tool, such as a micro-endmill with a diameter as small as 10 um, is rotated by an ultra-high-speed (UHS) spindle (speeds greater than 60,000 rpm, reaching up to 500,000 rpm) to mechanically remove the material from a workpiece. Although micromachining resembles the traditional computer numerically controlled (CNC) machining processes, the micron-scale cutting tools, ultra-high-speed (UHS) spindles, and considerably tighter tolerance requirements bring unique challenges to micromachining.
9

Investigação da usinabilidade do açoinoxidável duplex UNS 32205 no microfresamento / Investigation of the usability of duplex stainless steel UNS 32205 in micromilling

Silva, Letícia Cristina 28 August 2017 (has links)
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais / O aumento crescente da procura por produtos que necessitam de componentes cada vez menores impulsiona o desenvolvimento da microusinagem, considerada altamente necessária para os avanços tecnológicos na área metal mecânica. Neste contexto, o microfresamento é uma alternativa viável para a fabricação destes microcomponentes, permitindo a usinagem de geometrias complexas em diversos materiais tais como: metais e ligas, compósitos, polímeros, cerâmicas e alguns aços inoxidáveis, sendo que estes últimos despertam grande interesse para a indústria devido à sua característica de grande resistência à corrosão e à oxidação. No entanto, adaptar o conhecimento do fresamento de aços inoxidáveis em escala convencional para a microescala exige o entendimento dos fenômenos específicos que surgem com a redução das dimensões envolvidas nas operações. Diante desse contexto, este trabalho tem como principal objetivo a investigação da usinabilidade do aço inoxidável duplex UNS S32205 no microfresamento. Para tanto, foram realizados ensaios para fabricação de microcanais, utilizando uma microfresadora CNC de quatro eixos, rotação máxima de 60 000 rpm e resolução de 0,1 μm, usando microfresas de metal duro com diâmetro de 200 µm e 400 µm. A partir dos dados experimentais, foram analisados a evolução do desgaste, as formas e mecanismos de desgaste da ferramenta, a formação de rebarba, a superfície microusinada, a rugosidade superficial e a formação de cavaco. Os resultados mostram que a ferramenta com diâmetro de 200 µm apresentou um excelente desempenho em relação ao comprimento usinado, no entanto o aumento da velocidade de corte levou a um desgaste excessivo e altas rebarbas. Na usinagem utilizando ferramentas de diâmetro 400 µm, o desgaste e altura das rebarbas foi atenuado através da utilização do fluído de corte. E por fim, as ferramentas com maior diâmetro apresentaram rebarbas muito menores quando comparadas às de menor diâmetro, formando cavacos contínuos, além de apresentarem um menor grau de recalque. / The increasing demand for products requiring increasingly smaller components drives the development of micromachining, which is considered to be highly necessary for technological advances in the field of mechanical engineering. In this context, micromilling is a viable alternative for the manufacture of these microcomponents, allowing the machining of complex geometries in various materials such as: metals and alloys, composites, polymers, ceramics and some stainless steels, the latter of which arouse great interest for the industry due to its characteristic of great resistance to corrosion and oxidation. However, adapting the knowledge of milling of stainless steels on a conventional scale to the microscale requires an understanding of the specific phenomena that arise with the reduction of operations. Considering this context, this work has as main objective the investigation of the machinability of duplex stainless steel UNS S32205 in the micromilling operation. For that, tests were made to manufacture microchannels, using a 4-axis CNC micromill machine tool, with maximum spindle rotation of 60 000 rpm and resolution of 0.1 μm, using 200 µm and 400 µm diameter tools. From the experimental data, it was investigated the evolution of tool wear, the forms and mechanisms of tool wear, burr formation, machined surface quality, surface roughness and chip formation. The results show that the tool with diameter 200 µm presented an excellent performance in relation to the machined length, however the increased cutting speed led to excessive wear and high burrs. In the machining tests using tools with diameter 400 µm, the wear and height of the burrs was attenuated through the use of cutting fluid. Finally, the tools with the largest diameter presented minor burrs when compared to the smaller diameter, forming continuous chips, in addition to presenting a lower chip thickness ratio of the chips. / Dissertação (Mestrado)
10

Manufatura de microelementos ópticos difrativos / Manufacturing of diffractive optical microelements

Colafemina, João Paulo 17 December 2010 (has links)
Os elementos ópticos difrativos representam um mercado em franco crescimento, da ordem de bilhões de dólares. Seu uso ostensivo está nos microeletrônicos, sistemas de iluminação, telecomunicações, equipamentos de segurança e outros. Por isso, esta tese teve como objetivo realizar investigação pública profunda no assunto. Insertos de cobre eletrolítico foram usados por proporcionar excelente acabamento superficial quando usinados com ferramenta de diamante monocristalino obtendo valores de Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm e para o aço inoxidável polido os resultados foram de Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. As réplicas foram construídas em PMMA - DH ECL P com transmitância da luz avaliada em aproximadamente 90% em todo o espectro visível e infravermelho. Foram produzidos sete tipos de microelementos ópticos difrativos, baseados na geometria de Fresnel e nos arranjos de microlentes esféricas. Foi necessário desenvolver o código computacional denominado LF2010 para auxiliar a construção do projeto das microlentes anesféricas de Fresnel e calcular sua modulação de fase. Quatro processos determinísticos na fabricação dos µEODs foram usados: torneamento de ultraprecisão com ferramenta de diamante, microforjamento, microfresamento e a combinação dos dois últimos. O método estocástico de polimento foi usado para gerar acabamento óptico e compará-lo ao torneamento com SPDT. As análises metrológicas qualitativas e dimensionais foram conduzidas com o uso do MEV e da perfilometria óptica. No torneamento de ultraprecisão com ferramenta de diamante foi comprovada a presença do fenômeno conhecido como \"stick slip\" nos degraus da zona de Fresnel, corrigidos alterando-se o projeto. Para os arranjos de empacotamento completo os valores da rugosidade foram mais elevados em função da interatividade das lentes adjacentes do conjunto com \'fi\' = 100%, chegando até mesmo a causar microfraturas na estrutura das microlentes. Após sucessivos processos de calibragem, foram manufaturadas as réplicas pelas técnicas de termomoldagem e moldagem por injeção. Os resultados de replicação das microlentes mostraram que a razão de aspecto e a relação superfície/volume influenciaram significativamente na fidelidade de replicação das microlentes, sendo constatado que as lentes de Fresnel com altura variável possuem maior volume em relação às de altura constante e, consequentemente, melhor fidelidade na replicação. Na termomoldagem, as variações nas dimensões das cristas foram de nanômetros e a fidelidade no processo foi de aproximadamente 100% para todas as zonas de Fresnel. Nesta técnica, porém, os tempos de ciclos são até 40 vezes maiores que os da moldagem por injeção. As investigações paraxiais de FTM para a microlente de Fresnel com altura variável convexa foram de 85,2 % para 25 lp/mm, 67,5% para 50 lp/mm e 71,2% para 75 lp/mm. A simulação por elementos finitos foi usada para auxiliar nos estudos conferindo a sensibilidade do método de cálculo numérico do simulador nas escalas macroscópicas e microscópicas. No final, investigado o desgaste da aresta de corte da ferramenta, verificou-se o desgaste de flanco e a formação da APC, constituída de partículas do cavaco de cobre com formação lamelar. Conclui-se que é possível reproduzir diversos tipos de µEODs com métodos de produção em massa da moldagem por injeção tomando-se cuidado com as variáveis do processo, geometria da peça e propriedades físicas e químicas do material a ser replicado. / Diffractive optical elements represent a fast growing market, in order of billions dollars. Its use is employed in microelectronics, illumination systems, telecommunications, security devices, and others. For this reason, this thesis aimed to make depth public research in the subject. Electrolytic copper inserts were used for providing excellent surface finish when machined with monocrystalline diamond tool getting values of Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm, for the polished stainless steel the results were Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. The replicas were built in PMMA - DH ECL P with light transmittance approximately 90% for visible and infrared spectrum. Seven types of diffractive optical microelements were produced, based in Fresnel geometry and spherical microlens array. For this, it was necessary to develop the computer code called LF2010 to support the construction design of aspheric Fresnel microlenses and calculate its phase transformation function. Four deterministic manufacturing processes of µDOEs were used: ultraprecision diamond turning, microforging, micromilling and the combination of the two last. Stochastic method of polishing was used to obtain mirror surface roughness and compare to SPDT. The qualitative analysis and dimensional metrology were conducted using MEV and optical profiling system respectively. In ultraprecision diamond turning has proved the presence of the phenomenon known as stick slip on the steps of Fresnel zone that was corrected by changing the design. For complete packaging arrays the roughness values were higher due the interaction of adjacent lenses of set with \'fi\' = 100% have even cause microfractures in the structure of microlenses. After successive calibration procedures in the manufacture of copper inserts, replicas were fabricated by techniques of hot emboss and injection molding. The results of microlenses replication showed that the aspect ratio and surface/volume ratio affected the fidelity replication of microlenses, and had been noted that the Fresnel lenses with variable height have higher volume in relation to constant height and consequently better fidelity in replication. Hot emboss process show little variations in the dimensions of the crests, in order of few nanometers, resulting a fidelity approximately 100% for all zones of Fresnel, however the cycle\'s technique are up to 40 times higher than injection molding. The paraxial FTM analysis shows 85,2% for 25 lp/mm, 67,5% for 50 lp/mm and 71,2% for 75 lp/mm to convex Fresnel microlens with variable height. Finite element analysis was used to aid in the studies giving the sensitivity of numerical method adopted in terms of macroscale and microscale. In the end, the wear of edge cutting tool was investigated and found wear flank and formation of built up edge that was made up of chip particles of copper, witch were formed continuously with segmented structure lamellar. Hence, after numerous studies and analysis we can conclude that it is possible to construct µDOEs by means of mass production methods of injection molding taking care of process variables, part geometry and physical and chemical properties of material being replicated.

Page generated in 0.077 seconds