In this thesis, we compute approximate solutions to initial value problems of first-order linear ODEs using five explicit Runge-Kutta methods, namely the forward Euler method, Heun's method, RK4, RK5, and RK8. This thesis aims to compare the accuracy, stability, and efficiency properties of the five explicit Runge-Kutta methods. For accuracy, we carry out a convergence study to verify the convergence rate of the five explicit Runge-Kutta methods for solving a first-order linear ODE. For stability, we analyze the stability of the five explicit Runge-Kutta methods for solving a linear test equation. For efficiency, we carry out an efficiency study to compare the efficiency of the five explicit Runge-Kutta methods for solving a system of first-order linear ODEs, which is the main focus of this thesis. This system of first-order linear ODEs is a semi-discretization of a two-dimensional wave equation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-48211 |
Date | January 2020 |
Creators | Amir Taher, Kolar |
Publisher | Mälardalens högskola, Akademin för utbildning, kultur och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | LÄRARUTBILDNINGEN, |
Page generated in 0.002 seconds