Return to search

Development of Tantalum-Doped Tin Oxide as New Solar Selective Material for Solar Thermal Power Plants

Solar absorber coatings are one of the key components in concentrated solar power (CSP) plants. Currently operating at temperatures up to 565°C and suffering from emissive losses, their energy conversion efficiency could be improved by applying high-temperature stable materials with solar selective properties, i.e. high absorptivity and low emissivity. In this work, the transparent conductive oxide (TCO) SnO2:Ta is developed as a solar selective coating (SSC) for CSP absorbers. Starting with simulations covering basic requirements for SSCs, the deposition process of SnO2:Ta is optimized and extensive optical characterization and modelling are performed. It is shown that upon covering with a SiO2 antireflective layer, a calculated absorptivity of 95% and an emissivity of 30% are achieved for the model configuration of SnO2:Ta on top of a perfect black body (BB). High-temperature stability of the developed TCO up to 800 °C is shown in situ by spectroscopic ellipsometry and Rutherford backscattering spectrometry. The universality of the concept is then demonstrated by transforming silicon and glassy carbon from non-selective into solar selective absorbers by depositing the TCO on top of them. Finally, the energy conversion efficiencies ηCSP of SnO2:Ta on top of a BB and an ideal non-selective BB absorber are compared as a function of solar concentration factor C and absorber temperature TH.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:87808
Date15 April 2024
CreatorsLungwitz, Frank
ContributorsGemming, Sibylle, Galindo, Ramon Escobar, Technische Universität Chemnitz, Helmholtz-Zentrum Dresden-Rossendorf
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/updatedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0359 seconds