Return to search

Les réseaux bayésiens : classification et recherche de réseaux locaux en cancérologie

En cancérologie, les puces à ADN mesurant le transcriptome sont devenues un outil commun pour chercher à caractériser plus finement les pathologies, dans l'espoir de trouver au travers des expressions géniques : des mécanismes,des classes, des associations entre molécules, des réseaux d'interactions cellulaires. Ces réseaux d'interactions sont très intéressants d'un point de vue biologique car ils concentrent un grand nombre de connaissances sur le fonctionnement cellulaire. Ce travail de thèse a pour but, à partir de ces mêmes données d'expression, d'extraire des structures pouvant s'apparenter à des réseaux d'interactions génétiques. Le cadre méthodologique choisi pour appréhender cette problématique est les " Réseaux Bayésiens ", c'est-à-dire une méthode à la fois graphique et probabiliste permettant de modéliser des systèmes pourtant statiques (ici le réseau d'expression génétique) à l'aide d'indépendances conditionnelles sous forme d'un réseau. L'adaptation de cette méthode à des données dont la dimension des variables (ici l'expression des gènes, dont l'ordre de grandeur est 105) est très supérieure à la dimension des échantillons (ordre102 en cancérologie) pose des problèmes statistiques (de faux positifs et négatifs) et combinatoires (avec seulement 10gènes on a 4×1018 graphes orientés sans circuit possibles). A partir de plusieurs problématiques de cancers (leucémies et cancers du sein), ce projet propose une stratégie d'accélération de recherche de réseaux d'expression à l'aide de Réseaux Bayésiens, ainsi que des mises en œuvre de cette méthode pour classer des tumeurs, sélectionner un ensemble de gènes d'intérêt reliés à une condition biologique particulière, rechercher des réseaux locaux autour d'un gène d'intérêt.On propose parallèlement de modéliser un Réseau Bayésien à partir d'un réseau biologique connu, utile pour simuler des échantillons et tester des méthodes de reconstruction de graphes à partir de données contrôlées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00707732
Date25 May 2010
CreatorsPrestat, Emmanuel
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0027 seconds