Dans de nombreux problèmes en apprentissage supervisé, les entrées ont une structure de groupes connue et/ou clairement identifiable. Dans ce contexte, l'élaboration d'une règle de prédiction utilisant les groupes plutôt que les variables individuelles peut être plus pertinente tant au niveau des performances prédictives que de l'interprétation. L'objectif de la thèse est de développer des méthodes par arbres adaptées aux variables groupées. Nous proposons deux approches qui utilisent la structure groupée des variables pour construire des arbres de décisions. La première méthode permet de construire des arbres binaires en classification. Une coupure est définie par le choix d'un groupe et d'une combinaison linéaire des variables du dit groupe. La seconde approche, qui peut être utilisée en régression et en classification, construit un arbre non-binaire dans lequel chaque coupure est un arbre binaire. Ces deux approches construisent un arbre maximal qui est ensuite élagué. Nous proposons pour cela deux stratégies d'élagage dont une est une généralisation du minimal cost-complexity pruning. Les arbres de décision étant instables, nous introduisons une méthode de forêts aléatoires pour variables groupées. Outre l'aspect prédiction, ces méthodes peuvent aussi être utilisées pour faire de la sélection de groupes grâce à l'introduction d'indices d'importance des groupes. Ce travail est complété par une partie indépendante dans laquelle nous nous plaçons dans un cadre d'apprentissage non supervisé. Nous introduisons un nouvel algorithme de clustering. Sous des hypothèses classiques, nous obtenons des vitesses de convergence pour le risque de clustering de l'algorithme proposé. / In many problems in supervised learning, inputs have a known and/or obvious group structure. In this context, elaborating a prediction rule that takes into account the group structure can be more relevant than using an approach based only on the individual variables for both prediction accuracy and interpretation. The goal of this thesis is to develop some tree-based methods adapted to grouped variables. Here, we propose two new tree-based approaches which use the group structure to build decision trees. The first approach allows to build binary decision trees for classification problems. A split of a node is defined according to the choice of both a splitting group and a linear combination of the inputs belonging to the splitting group. The second method, which can be used for prediction problems in both regression and classification, builds a non-binary tree in which each split is a binary tree. These two approaches build a maximal tree which is next pruned. To this end, we propose two pruning strategies, one of which is a generalization of the minimal cost-complexity pruning algorithm. Since decisions trees are known to be unstable, we introduce a method of random forests that deals with groups of inputs. In addition to the prediction purpose, these new methods can be also use to perform group variable selection thanks to the introduction of some measures of group importance, This thesis work is supplemented by an independent part in which we consider the unsupervised framework. We introduce a new clustering algorithm. Under some classical regularity and sparsity assumptions, we obtain the rate of convergence of the clustering risk for the proposed alqorithm.
Identifer | oai:union.ndltd.org:theses.fr/2018ISAR0011 |
Date | 18 October 2018 |
Creators | Poterie, Audrey |
Contributors | Rennes, INSA, Dupuy, Jean-François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds