Return to search

Étude des chromosomes sexuels et du déterminisme du sexe chez les plantes : comparaison des systèmes Silene et Coccinia / A study of sex chromosomes and sex determination in plants : Silene and Coccinia systems comparison

Bien que les sexes séparés (dioecie) soient plus rares que chez les animaux, ∼15 600 espèces dioiques ont évolué chez les angiospermes (∼6% de l'ensemble des espèces). La manière dont le sexe de ces plantes est contrôlé est une question centrale de la biologie végétale, mais également de l'agronomie car de nombreuses plantes cultivées sont des plantes dioiques (∼20% des espèces cultivées) mais dont un seul sexe (généralement les femelles) présente un intérêt agronomique. Pourtant, seulement trois gènes du déterminisme du sexe ont été identifiés à ce jour chez les plantes dioiques, chez le kaki, l'asperge et la fraise. La dioecie a vraisemblablement évolué plusieurs fois chez les angiospermes et il est possible que les gènes du déterminisme du sexe soient divers. Deux voies principales d'évolution vers la dioecie ont été identifiées. Les deux partent d'une espèce dont les fleurs sont hermaphrodites, le régime de reproduction ancestral chez les angiospermes, puis passent soit par un intermédiaire monoique (espèce avec des fleurs unisexuées mâles et femelles sur le même individu), soit par un intermédiaire gynodioique (espèce avec des femelles et des individus avec des fleurs hermaphrodites). Cette thèse a pour objet la comparaison de deux systèmes de plantes représentant ces deux voies. Chez Coccinia grandis, une cucurbitacée ayant également des chromosomes XY, l'évolution de la dioecie est passée par la monoecie. Chez Silene latifolia, une plante dioique bien étudiée avec des chromosomes sexuels XY, l'évolution de la dioecie s'est faite à partir de la gynodioecie. Trois gènes contrôlant la monoecie ont été identifiés chez le melon et il a été proposé que ces gènes soient les gènes du déterminisme dans les espèces dioiques proches du melon comme C. grandis. Nous avons donc opté pour une approche gène candidat dans cette espèce. Très peu de ressources génétiques et génomiques sont disponibles chez C. grandis, et nous avons choisi d'utiliser SEXDETector, une méthode probabiliste qui utilise des données RNA-seq pour génotyper des parents et leurs descendants, et qui infère les gènes lies au sexe sans génome de référence. Cette méthode m'a permis d'identifier 1 364 gènes présents sur les chromosomes sexuels de C. grandis. J'ai établi que les gènes differentiellement exprimés entre les sexes étaient plus abondants sur chromosomes sexuels que sur les autosomes. J'ai également observé des marques de la dégénérescence du chromosome Y chez cette plante, comme des diminutions d'expression ou des pertes de gènes. Enfin, mes résultats démontrent la présence de compensation de dosage chez C. grandis. Le test des gènes candidats est en cours. Chez S. latifolia, 3 grandes régions liées au déterminisme ont déjà été identifiées sur le chromosome Y. Pour identifier les gènes du déterminisme, nous avons choisi de séquencer ce chromosome. Le séquençage des chromosomes Y est encore un défi pour la génomique. La phase d'assemblage est très difficile à cause des répétitions présentes en grand nombre sur ces chromosomes. En conséquence, les séquences complètes de chromosome Y sont très rares, et principalement disponibles chez les animaux. Afin de minimiser les problèmes d'assemblage dus aux répétitions, nous avons utilisé des techniques dites de 3eme génération (avec de grandes lectures). J'ai moi-même généré des données MinION (Oxford Nanopore) à partir d'ADN de chromosome Y. L'assemblage a été réalisé en combinant des données Illumina, PacBio et MinION. Notre assemblage final fait une taille de 563 Mb pour un N50 de 6 114 pb, et contient 16 219 gènes annotés de novo / Although rarer than in animals, separate sexes (dioecy) have evolved in ∼15,600 angiosperm species (∼6% of all angiosperm species). How sex is controlled is a central question in plant sciences and also in agronomy as many crops are dioecious (∼20% of crops) with only one useful sex (usually female). Only three master sex-determining genes have been identified in dioecious plants so far, namely in persimmons, asparagus and strawberry. Dioecy likely evolved several times independently in angiosperms, suggesting that sex-determining genes are of diverse origins. Hermaphroditism is the predicted ancestral state of the angiosperm flower. Two main pathways have been identified that explain the evolution of hermaphroditism towards dioecy: either through a monoecious state (with both unisexual male and female flowers on the same individual) or a gynodioecious state (with females and individuals having hermaphroditic flowers). My aim is to compare two plant systems representing each one of these two pathways. In Coccinia grandis, a Cucurbitaceae with an XY chromosome system, dioecy evolved through monoecy. In Silene latifolia, a well-studied dioecious plant with XY sex chromosomes, dioecy evolved through gynodioecy. Three genes controlling monoecy have been identified in melon, and it was suggested that these genes act as sex-determining genes in closely related dioecious species such as C. grandis. I therefore chose a candidate gene approach in this species. Very few genetic and genomic data are available in C. grandis, and we chose to use SEX-DETector, a probabilistic method that uses RNA-seq data to genotype parents and their offspring, and infers sex-linked genes with no need for a reference genome. This method allowed me to identify 1,364 genes that are present on the sex chromosomes of C. grandis. I found that the sex chromosomes are enriched in sex-biasedgenes when compared to autosomes and I characterized Y chromosome degeneration in terms of decreased expression and gene loss. Finally, I showed that dosage compensation occurs in C. grandis. Testing for the three candidates genes is ongoing. In S. latifolia 3 regions involved in sex determination have already been identified on the Y chromosome. We chose to sequence this chromosome to identify sex-determining genes. The sequencing of Y chromosomes remains one of the greatest challenges of current genomics. The assembly step is very difficult because of their highly repeated content. Consequently, fully sequenced Y chromosomes are rare and mainly available for research in animals. To overcome the difficulty of assembling reads with many repeats, I used third generation sequencing (TGS, producing long reads). I produced a dataset using the Oxford Nanopore MinION sequencer with Y chromosome DNA. Assembling was performed using a combination of Illumina, MinION and PacBio sequencing data. The final assembly had a total length of 563 Mb with a scaffold N50 of 6,114 bp, and contained 16,219 de novo annotated genes

Identiferoai:union.ndltd.org:theses.fr/2018LYSE1108
Date09 July 2018
CreatorsFruchard, Cécile
ContributorsLyon, Marais, Gabriel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0056 seconds