Le développement récent des prime editors (PE) a introduit un nouvel outil de modification génomique précis, qui permet un large éventail de modifications génétiques ciblées sans nécessité de modèles d'ADN donneur. L'édition primaire utilise la transcription inverse amorcée par la cible pour inscrire des séquences modifiées dans le génome. Cette approche permet l'installation de toutes les variantes de nucléotides uniques ainsi que de courtes insertions et délétions, offrant la méthode la plus polyvalente et précise d'édition génomique à ce jour. Cependant, les PE sont actuellement limités par une faible efficacité. Dans le cadre du premier chapitre de cette thèse, nous avons développé une méthode à haut débit, l'essai de séquençage Peptide Self-Editing sequencing assay (PepSEq), pour mesurer comment la fusion de 12 000 peptides de 85 acides aminés influence l'efficacité de PE. Nos résultats démontrent que l'intégration de la fusion de peptides augmente significativement les capacités de PE. Spécifiquement, nous avons identifié que les peptides améliorant l'édition, lorsqu'ils sont combinés de manière synergique, conduisent à des améliorations substantielles de l'édition dans une variété de lignées cellulaires et sur de nombreux sites cibles génomiques. Notamment, la configuration la plus efficace de double peptide-éditeur primaire a considérablement augmenté l'efficacité de PE. Le mécanisme sous-jacent de cette construction semble être une amélioration de l'efficacité de la traduction, les établissant comme des outils universellement applicables pour optimiser l'édition primaire. Dans le cadre du deuxième chapitre de cette thèse, nous avons décrit une approche de mutagenèse saturante utilisant les PE. Nous exploitons le système PE en conjonction avec une plateforme de criblage à haut débit qui incorpore un rapporteur intégré pour mesurer les résultats d'édition et leurs ramifications phénotypiques afin d'évaluer efficacement les variants associés aux maladies. Ensuite, nous appliquons cette stratégie dans un essai de captation de LDL fluorescent, pour une interprétation fonctionnelle précise de variants complexes, tels que ceux affectant la captation de LDL. Ce travail établit un nouveau référentiel pour l'évaluation fonctionnelle des variants génétiques en fournissant une compréhension plus nuancée de la pathogénicité des variants et de ses mécanismes structurels. / The recent development of prime editors (PE) has introduced a novel, precise genome editing tool that enables a broad array of targeted genetic modifications without the need for donor DNA templates. Prime editing uses target-primed reverse transcription to write altered sequences into the genome. This approach allows for the installation of all single-nucleotide variants as well as short insertions and deletions, offering the most versatile and precise method for genome editing to date. However, PEs are currently limited by low efficiency. As part of the first chapter of this thesis, we developed a high-throughput method, Peptide Self-Editing sequencing assay (PepSEq), to measure how fusion of 12,000 85-amino acid peptides influences prime editing efficiency. Our findings demonstrate that the integration of peptide fusion significantly augments prime editing capabilities. We identified that prime-enhancing peptides, when synergistically combined, lead to substantial improvements in prime editing across a variety of cell lines and at numerous genomic target sites. Notably, the most effective dual peptide-prime editor configuration substantially elevated prime editing efficiency. The underlying mechanism of this construct appears to be an enhancement of translation efficiency, establishing them as universally applicable tools for optimizing prime editing. As part of the second chapter of this thesis, we describe a saturation mutagenesis approach using PEs. We leverage the PE system in conjunction with a high-throughput screening platform that incorporates an integrated reporter for measuring editing outcomes and their phenotypic ramifications to efficiently evaluate disease-associated variants. Then, we apply this strategy in a fluorescent LDL uptake assay for precise functional interpretation of complex variants, such as those affecting LDL uptake. This work sets a new benchmark for the functional assessment of genetic variants by providing a more nuanced understanding of variant pathogenicity and its structural mechanisms.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/152785 |
Date | 29 October 2024 |
Creators | Velimirovic, Minja |
Contributors | Corbeil, Jacques |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xiv, 96 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.003 seconds