Return to search

Wafer-level heterogeneous integration of MEMS actuators

This thesis presents methods for the wafer-level integration of shape memory alloy (SMA) and electrostatic actuators to functionalize MEMS devices. The integration methods are based on heterogeneous integration, which is the integration of different materials and technologies. Background information about the actuators and the integration method is provided. SMA microactuators offer the highest work density of all MEMS actuators, however, they are not yet a standard MEMS material, partially due to the lack of proper wafer-level integration methods. This thesis presents methods for the wafer-level heterogeneous integration of bulk SMA sheets and wires with silicon microstructures. First concepts and experiments are presented for integrating SMA actuators with knife gate microvalves, which are introduced in this thesis. These microvalves feature a gate moving out-of-plane to regulate a gas flow and first measurements indicate outstanding pneumatic performance in relation to the consumed silicon footprint area. This part of the work also includes a novel technique for the footprint and thickness independent selective release of Au-Si eutectically bonded microstructures based on localized electrochemical etching. Electrostatic actuators are presented to functionalize MEMS crossbar switches, which are intended for the automated reconfiguration of copper-wire telecommunication networks and must allow to interconnect a number of input lines to a number of output lines in any combination desired. Following the concepts of heterogeneous integration, the device is divided into two parts which are fabricated separately and then assembled. One part contains an array of double-pole single-throw S-shaped actuator MEMS switches. The other part contains a signal line routing network which is interconnected by the switches after assembly of the two parts. The assembly is based on patterned adhesive wafer bonding and results in wafer-level encapsulation of the switch array. During operation, the switches in these arrays must be individually addressable. Instead of controlling each element with individual control lines, this thesis investigates a row/column addressing scheme to individually pull in or pull out single electrostatic actuators in the array with maximum operational reliability, determined by the statistical parameters of the pull-in and pull-out characteristics of the actuators. / QC20100729

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-11833
Date January 2010
CreatorsBraun, Stefan
PublisherKTH, Mikrosystemteknik, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2010:002

Page generated in 0.002 seconds