The first main focus in the present project was to analyse the boundary treatment of the linearised Korteweg-de Vries equation. The second main focus was to derive a stable numerical solution using a high-order finite difference method. Since the model involved a third derivative in space, the numerical treatment of the boundaries was highly nontrivial. To aid the boundary treatment high-order accurate first and third derivative finite difference operators were employed. The boundaries are based on the summation-by-parts (SBP) framework, thereby guaranteeing linear stability. The boundary conditions were imposed using a penalty technique. A convergence study was performed where the derived numerical solution was compared with an analytical one. Fourth order accurate Runge-Kutta was used to time-integrate the numerical approximation. Measuring the rate of convergence, q, yielded q = 4 for 4th order accurate SBP-operators and q = 5.5 for 6th order accurate SBP-operators. Thus the convergence study proved the accuracy and stability of the numerical solution derived with the SBP-methodology.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-229330 |
Date | January 2014 |
Creators | Bahceci, Ertin |
Publisher | Uppsala universitet, Institutionen för teknikvetenskaper |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TVE ; TVE 14 030 juni |
Page generated in 0.002 seconds