Return to search

Nanocomposites industriels simplifiés : analyse structurale et propriétés mécaniques / Simplified industrial nanocomposites : structural analysis and mechanical properties

Cette thèse propose l'étude de matériaux composites industriels simplifiés constitués de caoutchouc non réticulé (copolymère styrène-butadiène « SBR ») renforcés par des charges nanométriques de silice hautement dispersible. Afin d'identifier les mécanismes physico-chimiques responsables de ce renforcement et être capable de l'optimiser, nous devons comprendre les corrélations existantes entre les propriétés macroscopiques du matériau et la structure des charges à différentes échelles.Pour cela, une large campagne d'expériences de diffusion de rayons-X aux petits angles (DXPA) ainsi que de nombreux clichés de microscopie électronique ont été réalisés. En couplant ces données avec des simulations Monte-Carlo, il a été notamment possible de mettre en avant la présence d'une organisation à trois niveaux en partant de billes élémentaires d'une dizaine de nanomètres formant des agrégats eux-mêmes arrangés selon un réseau tridimensionnel branché existant à travers tout l'échantillon.L'analyse du renforcement dans les nanocomposites a été effectuée par rhéométrie et analyse dynamique mécanique. D'autres techniques telles que la spectroscopie diélectrique, la résonance magnétique nucléaire, l'analyse thermogravimétrique ou la spectrométrie infrarouge ont également contribué à une caractérisation complète de ces matériaux, en particulier pour sonder la dynamique des chaînes de SBR à l'interface avec la charge.Afin de déceler les corrélations existantes entre structure et propriétés, nous nous sommes attachés à décrire systématiquement l'influence de paramètres-clés tels que la fraction volumique en silice, le type de polymère employé (greffable sur la silice ou pas) ou leur masse molaire sur la morphologie des charges (taille des agrégats, ...) ainsi que sur le comportement mécanique (module d'élasticité, ...) des composites. Ce travail a permis d'identifier la densité de greffage des chaines comme le paramètre définissant la structure des composites et impactant significativement le renforcement.Cette thèse, résolument tournée vers la compréhension fondamentale, s'inscrit, à terme, dans la recherche d'une loi de comportement décrivant l'effet de la structure des charges sur les performances des pneumatiques. Cette dernière doit permettre de répondre à des problématiques rencontrées en ingénierie telles que la résistance à l'usure, l'adhérence, ou la résistance au roulement.De plus, dans le but d'atteindre des informations supplémentaires quant aux interactions entre le caoutchouc et la silice, nous avons mis au point un protocole expérimental permettant de formuler des échantillons dits « modèles » renforcés avec une silice colloïdale. Cette dernière étant beaucoup mieux définie d'un point de vue géométrique, son analyse structurale est grandement facilitée rendant possible l'étude des potentiels mis en jeu pendant la production des nanocomposites. / In this thesis, we study nanocomposite materials made of non vulcanized rubber (styrene-butadien copolymer “SBR”) reinforced by highly dispersible silica nanofillers. In order to identify physico-chemical mechanisms responsible for such a reinforcement and being able to optimize it, we must understand existing correlations between the material macroscopic properties and the multi-scale structure of the filler.For this purpose, a wide campaign of small angle X-ray scattering (SAXS) and electronic microscopy experiments have been performed. Coupling this data with Monte-Carlo simulations led to the emergence of a concept describing the silica morphology: A branched tridimensional network built up from aggregates (radius  50 nm) made of nanoparticles (radius  10 nm) spreading accross the whole sample.The analysis of the reinforcement in nanocomposites is based on rheometry and dynamic mechanical analysis. Other techniques like dielectric spectroscopy, nuclear magnetic resonance, thermogravimetric analysis or infra-red spectrometry contributed as well to fully characterize these materials, particularly to probe the SBR chains dynamic at the interface with the filler.In order to reveal the correlations between structure and properties, we systematically described the impact of key parameters such as filler fraction, polymer grafting or the chain molar mass on the silica morphology (aggregates size, …) as well as on the mechanical behavior (elastic modulous, …) of the composites. This work allowed identifying the polymer grafting density as the parameter defining the filler structure and playing a significant role on the reinforcement.This thesis, firmly focused on fundamental comprehension, contributes to the development of a general law describing the effect of the filler structure on the performance of tires. The latter must provide answers to engineering issues concerning wear resistance, wet grip or rolling resistance.Moreover, in order to obtain additional information regarding the rubber-silica interactions, we developed an experimental process allowing the production of “model” systems reinforced with colloidal silica. The use of such filler, very well defined in terms of size and shape, makes much easier the structural analysis giving the opportunity to investigate deeper the effective potential between the two phases during the composite production.

Identiferoai:union.ndltd.org:theses.fr/2013MON20047
Date12 November 2013
CreatorsBaeza, Guilhem P.
ContributorsMontpellier 2, Oberdisse, Julian, Couty, Marc, Genix, Anne-Caroline
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0165 seconds