Durant cette thèse, une méthode d'analyse statistique sur la gerbe d'éclats d’une bombe, en particulier sur leurs masses, a été mise au point. Nous avions à disposition trois échantillons partiels de données expérimentales et un modèle mécanique simulant l'explosion d'un anneau. Dans un premier temps, un modèle statistique a été créé à partir du modèle mécanique fourni, pour générer des données pouvant être similaires à celles d'une expérience. Après cela, la distribution des masses a pu être étudiée. Les méthodes d'analyse classiques ne donnant pas de résultats suffisamment précis, une nouvelle méthode a été mise au point. Elle consiste à représenter la masse par une variable aléatoire construite à partir d'une base de polynômes chaos. Cette méthode donne de bons résultats mais ne permet pas de prendre en compte le lien entre les éclats d'une même charge. Il a donc été décidé ensuite de modéliser la masse par un processus stochastique, et non par une variable aléatoire. La portée des éclats, qui dépend en partie de la masse, a elle aussi été modélisée par un processus. Pour finir, une analyse de sensibilité a été effectuée sur cette portée avec les indices de Sobol. Ces derniers s'appliquant aux variables aléatoires, nous les avons adaptés aux processus stochastiques de manière à prendre en compte les liens entre les éclats. Dans la suite, les résultats de cette dernière analyse pourront être améliorés. Notamment, grâce à des indices présentés en dernière partie qui seraient adaptés aux variables dépendantes, et permettraient l'utilisation de processus stochastiques à accroissements non indépendants. / During this thesis, a method of statistical analysis on sheaf of bomb fragments, in particular on their masses, has been developed. Three samples of incomplete experimental data and a mechanical model which simulate the explosion of a ring were availables. First, a statistical model based on the mechanical model has been designed, to generate data similar to those of an experience. Then, the distribution of the masses has been studied. The classical methods of analysis being not accurate enough, a new method has been developed. It consists in representing the mass by a random variable built from a basis of chaos polynomials. This method gives good results however it doesn't allow to take into account the link between slivers. Therefore, we decided to model the masses by a stochastic process, and not a random variable. The range of fragments, which depends of the masses, has also been modeled by a process. Last, a sensibility analysis has been carried out on this range with Sobol indices. Since these indices are applied to random variables, it was necessary to adapt them to stochastic process in a way that take into account the links between the fragments. In the last part, it is shown how the results of this analysis could be improved. Specifically, the indices presented in the last part are adapted to dependent variables and therefore, they could be suitable to processes with non independent increases.
Identifer | oai:union.ndltd.org:theses.fr/2019CLFAC039 |
Date | 14 November 2019 |
Creators | Gayrard, Emeline |
Contributors | Clermont Auvergne, Chauvière, Cédric, Djellout, Hacène, Bonnet, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.005 seconds