Le présent travail est dédié à l’étude d’un procédé hybride couplant l’électrodialyse à membrane bipolaire et l’échange d’ions. Cette étude est appliquée au traitement de solutions diluées d’acide acétique. L’objectif est double : acquérir une compréhension théorique des processus de transfert et des mécanismes qui impactent la consommation énergétique de ce système hybride et, de façon plus appliquée, proposer une configuration de cellule qui permette d’éliminer l’acide de la solution traitée en la transférant vers un compartiment de concentration. Cette configuration doit permettre d’obtenir le taux de purification le plus élevé possible tout en minimisant la consommation d’énergie. Des critères visant à optimiser le choix des résines échangeuses d’ions (fortes ou faibles) dans les compartiments de dilution sont proposés. L’intérêt de l’utilisation d’une résine cationique forte sous forme H+ dans le compartiment de concentration est par ailleurs mise en évidence, conduisant à une diminution de la résistance du compartiment et de ce fait de la consommation d’énergie. Une étude réalisée sur des systèmes « couplés » et « découplés » a permis d’identifier les contributions résistives des différents éléments de l’empilement. Cette approche a conduit à la détermination des paramètres d’un modèle qui permet de prévoir la résistance électrique d’un lit de résine dans une solution donnée. Les consommations spécifiques d’énergie (kWh/kg d’acide transféré) ont été évaluées en fonction du taux de purification souhaité. L’ensemble de l’étude a permis d’établir des recommandations pour la conception de la cellule et pour le choix des paramètres opératoires. / This work is dedicated to the study of a hybrid separation process involving bipolar membrane electrodialysis and ion exchange. This study is applied to the treatment of diluted effluents. The aim is first to acquire a theoretical understanding of transfer processes and mechanisms that affect energy consumption of this hybrid system. Then, in a more applied way, the objective is to be able to propose a cell configuration that allows to remove the acid from the treated solution by transferring it to a concentration compartment. This configuration must allow to obtain the highest purification rates as possible while minimizing energy consumption. Criteria aiming at optimizing ion exchange resins (strong or weak) in dilution compartment are proposed. The interest of the introduction of strong cationic resin under H+ form in the concentrated compartment is highlighted, as it enables reducing compartment resistance and hence energy consumption. Furthermore, experimental measurements successively conducted with “decoupled” and “coupled” systems identified resistive contributions of the different elements of the stack. This approach led to the determination of parameters of a model which predicts the resin bed electrical resistance in a given solution. Specific energy consumption (kWh/Kg transferred acid) was evaluated as a function of the desired purification rate. All the work led to recommendations for the cell design and for the choice of operating parameters.
Identifer | oai:union.ndltd.org:theses.fr/2016LORR0208 |
Date | 29 October 2016 |
Creators | Jaouadi, Meyssa |
Contributors | Université de Lorraine, École nationale d'ingénieurs de Gabès (Tunisie), Muhr, Laurence, Hannachi, Ahmed |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds