Return to search

Microscale Physical and Numerical Investigations of Shear Banding in Granular Soils

Under loading conditions found in many geotechnical structures, it is common to observe failure in zones of high localized strain called shear bands. Existing models predict these localizations, but provide little insight into the micromechanics within the shear bands. This research captures the variation in microstructure inside and outside of shear bands that were formed in laboratory plane strain and two-dimensional discrete element method (DEM) biaxial compression experiments.
Plane strain compression tests were conducted on dry specimens of Ottawa 20-30 sand to calibrate the device, assess global response repeatability, and develop a procedure to quantitatively define the onset of localization. A new methodology was employed to quantify and correct for the additional stresses imparted by the confining membrane in the vicinity of the shear band. Unsheared and sheared specimens of varying dilatancy were solidified using a two-stage resin impregnation procedure. DEM tests were performed using an innovative servo-controlled flexible lateral confinement algorithm to provide additional insights into laboratory results.
The solidified specimens were sectioned and the resulting surfaces prepared for microstructure observation using bright field microscopy and morphological analysis. Local void ratio distributions and their statistical properties were determined and compared. Microstructural parameters for subregions in a grid pattern and along predefined inclined zones were also calculated. Virtual surfaces parallel to the shear band were identified and their roughnesses assessed. Similar calculations were performed on the DEM simulations at varying strain levels to characterize the evolution of microstructure with increasing strain.
The various observations showed that the mean, standard deviation, and entropy of the local void ratio distributions all increased with increasing strain levels, particularly within regions of high local strains. These results indicate that disorder increases within a shear band and that the soil within the shear band does not adhere to the classical concept of critical state, but reaches a terminal void ratio that is largely a function of initial void ratio. Furthermore, there appears to be a transition zone between the far field and the fully formed shear block, as opposed to an abrupt delineation as traditionally inferred.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7576
Date28 November 2005
CreatorsEvans, T. Matthew
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format10699503 bytes, application/pdf

Page generated in 0.0016 seconds