Return to search

AUV SLAM constraint formation using side scan sonar / AUV SLAM Begränsningsbildning med hjälp av sidescan sonar

Autonomous underwater vehicle (AUV) navigation has been a challenging problem for a long time. Navigation is challenging due to the drift present in underwater environments and the lack of precise localisation systems such as GPS. Therefore, the uncertainty of the vehicle’s pose grows with the mission’s duration. This research investigates methods to form constraints on the vehicle’s pose throughout typical surveys. Current underwater navigation relies on acoustic sensors. Side Scan Sonar (SSS) is cheaper than Multibeam echosounder (MBES) but can generate 2D intensity images of wide sections of the seafloor instead of 3D representations. The methodology consists in extracting information from pairs of side-scan sonar images representing overlapping portions of the seafloor and computing the sensor pose transformation between the two reference frames of the image to generate constraints on the pose. The chosen approach relies on optimisation methods within a Simultaneous Localisation and Mapping (SLAM) framework to directly correct the trajectory and provide the best estimate of the AUV pose. I tested the optimisation system on simulated data to evaluate the proof of concept. Lastly, as an experiment trial, I tested the implementation on an annotated dataset containing overlapping side-scan sonar images provided by SMaRC. The simulated results indicate that AUV pose error can be reduced by optimisation, even with various noise levels in the measurements. / Navigering av autonoma undervattensfordon (AUV) har länge varit ett utmanande problem. Navigering är en utmaning på grund av den drift som förekommer i undervattensmiljöer och bristen på exakta lokaliseringssystem som GPS. Därför ökar osäkerheten i fråga om fordonets position med uppdragets längd. I denna forskning undersöks metoder för att skapa begränsningar för fordonets position under typiska undersökningar. Nuvarande undervattensnavigering bygger på akustiska sensorer. Side Scan Sonar (SSS) är billigare än Multibeam echosounder (MBES) men kan generera 2D-intensitetsbilder av stora delar av havsbotten i stället för 3D-bilder. Metoden består i att extrahera information från par av side-scan sonarbilder som representerar överlappande delar av havsbotten och beräkna sensorns posetransformation mellan bildens två referensramar för att generera begränsningar för poset. Det valda tillvägagångssättet bygger på optimeringsmetoder inom en SLAM-ram (Simultaneous Localisation and Mapping) för att direkt korrigera banan och ge den bästa uppskattningen av AUV:s position. Jag testade optimeringssystemet på simulerade data för att utvärdera konceptet. Slutligen testade jag genomförandet på ett annoterat dataset med överlappande side-scan sonarbilder från SMaRC. De simulerade resultaten visar att AUV:s poseringsfel kan minskas genom optimering, även med olika brusnivåer i mätningarna.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321463
Date January 2022
CreatorsSchouten, Marco
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:706

Page generated in 0.0026 seconds